Apriori算法(频繁集发现以及关联分析)

2024-03-30 18:18

本文主要是介绍Apriori算法(频繁集发现以及关联分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        我们在网上购物的时候都会收到一些相关产品的推荐,这些被推荐的东西是怎么来的呢?如果我们买了一个鱼竿,那么推荐鱼线,鱼饵什么的是很正常的,毕竟这些产品都是相关性比较大的,收到推荐也不足为奇;但是仅限于此吗?之前不是有个很出名的例子,啤酒和尿布的例子,在没被发现这个规律之前,谁能想到他们两个有一定的联系?所以除过去那些关联性特别明显的东西,还有许多隐藏的有相关性的关系被隐藏在大量的数据之下。所以,从大规模数据集中寻找物品间的隐含关系被称作为关联分析或者关联规则学习。

        关联分析也可以用于特征的发现,发现某些事情的共性规则,即同时有哪些特征出现,例如发现毒蘑菇的共同特征。

1.关联分析

        关联分析是一种在在大规模数据集中寻找有趣关系的任务。这些关系可以分为两种形式:频繁项集合关联规则。       

        频繁项集:是经常出现在一块儿的物品的集合;

        关联规则:暗示两种物品之间可能存在很强的关系。

        表1是一个购物清单

                                                                    表1

交易号码

商品

0

豆奶,莴苣

1

莴苣,尿布,葡萄酒,甜菜

2

豆奶,尿布,葡萄酒,橙汁

3

莴苣,豆奶,尿布,葡萄酒

4

莴苣,豆奶,尿布,橙汁

        频繁项集是指那些经常出现在一起的物品集合,如表1中的{尿布,葡萄酒}就是一个很好的例子,就是说人们经常会把尿布和葡萄酒一起购买。

        我们用支持度来衡量这个集合出现的频繁度,它被定义为数据集中宝行该项集的记录所占的比例。从表1中可以得到,{豆奶}的支持度为4/5,有3条包含{豆奶,尿布}的记录,一次{豆奶,尿布}的支持度为3/5,因此我们可以指定一个支持度,从而过滤掉那些支持度小的集合。

        可信度或者说是置信度是针对一条诸如{尿布}->{葡萄酒}的关联规则定义的,有很强的方向性,箭头反过来就不一定成立。上面箭头关联规则可定义为:支持度({尿布,葡萄酒})/支持度({尿布}),{尿布,葡萄酒}的支持度为3/5,尿布的支持度为4/5,所以{尿布}->{葡萄酒}的可信度为3/4=0.75。可以这么理解:尿布和葡萄酒同时出现的概率比上尿布单独出现的概率,即在尿布出现的情况下,葡萄酒出现的概率,从而衡量尿布出现的情况下,葡萄酒出现可能性的大小。

2.Apriori原理

        在进行频繁集发现的时候,我们需要从小的集合开始,为什么呢?我们看图2:

 

                                                              图2

        假如我们有4样商品,那么进行不同大小的集合的组合,一共有15种组合方式,那我们就需要进行15次的判断。那么有N种商品,我们就需要2的N次方-1种的组合,那么这种指数级的增长必定会加大运算量,所以我们需要想办法减少判断的组合。

        假设我们从小集合开始判断,判断出{3}的支持度比较低,也就是在样本数据中出现3的次数比较少,那么12,13,23…等组合都是包括3的,那么他们的支持度是不会比3大的,也就是说如果小集合的支持度比较小,那么包含小集合的大集合也就不需要判断了,那么这就大大减少了判断的成本,也就降低了计算成本。所以我们就可以运用这个原理来发现频繁集。

3.使用Apriori算法来发现频繁集

        Apriori算法使用Apriori原理来发现频繁集。我们需要输入最小支持度和数据集,通过最小支持度对数据集进行过滤,得到频繁集。

        我们首先

这篇关于Apriori算法(频繁集发现以及关联分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862226

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis