【算法与数据结构】—— 基数排序(后缀数组基础)

2024-03-30 12:58

本文主要是介绍【算法与数据结构】—— 基数排序(后缀数组基础),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基数排序



定义:
基数排序(Radix Sort)是桶排序的扩展,它的基本思想是:将整数按位切割成不同的数字,然后按每个位数分别比较(位操作)。
具体做法是:将待排序序列中的所有数字统一为同一数位长度,数位较短的数前面补零(比如对于序列{1,23,456}而言,需要将这序列格式化为{001,023,456})。然后从最低位开始,依次排序,直到最高位排序完成以后, 数列就变成一个有序序列。




下面通过一个实际的例子来进行阐述。
假设现在需要对数组{42, 6, 184, 671, 24, 819, 352, 74}进行排序,采用基数排序的流程如下:
Alt
在上图中,首先是将所有待排序数值的长度统一(比如在上面的数字集合中,最大的数是个三位数,因此需要将上面的数字集合中的42改写为042、6改写为006、24改写为024、74改写为074),然后再从最低位开始,依次进行排序,排序流程如下:

  1. 按照个位数进行排序。
  2. 按照十位数进行排序。
  3. 按照百位数进行排序。

最终,数列就变成了一个有序序列。
实际上,每个位上的排序其主要思路都是一致的。也就是说如果我们能够实现对其中某个位置上的排序,那么剩下的那些都将迎刃而解。下面我们就以“个位”为例,对数组{42, 6, 184, 671, 24, 819, 352, 74}进行基数排序,其过程如下:
① 首先,我们需要定义一个用于统计数字[0,9]的出现次数的桶数组buckets[ ],并将其中的所有元素初始化为0。显然,其长度应设为10;
② 接下来我们对原数组中个位上的各个值进行统计,如下:
Alt
此时我们得到的桶数组的值为:buckets[10]={0,1,2,0,3,0,1,0,0,1}。
紧接着,我们对桶数组中的每项都进行一个前缀累加操作,此时桶数组中的值更新为:
buckets[10]={0,1,3,3,6,6,7,7,7,8}。
③ 对于原数组ary[8]={42, 6, 184, 671, 24, 819, 352, 74},如果仅按个位上的值进行排序的话,我们容易得到答案为ans[8]={671, 42, 352, 184, 24, 74, 6, 819}(数值相同时,就依照其本身的前后位置进行排列)。此时我们来分析桶数组buckets[ ]、排序后的数组ans[ ]以及原数组ary[ ]之间的关系,看能否从中找到联系:
Alt
如上图所示:如果我们从最后一项往前看,首先是ary[7]=74,其个位上的数为4;
对应看buckets[4]=6,而在最终的结果数组ans中,ans[6-1]=ans[5]正好等于74。

继续往上推,接下来是ary[6]=352,其个位上的数为2;
对应看buckets[2]=3,而在最终的结果数组ans中,ans[3-1]=ans[2]正好等于352。

再往上推是ary[5]=819,其个位上的数为9;
对应看buckets[9]=8,而在最终的结果数组ans中ans[8-1]=ans[7]正好等于819。

不难发现,对于初始数组ary而言,如果我们仅看待排序的数在某个位置上的值(比如上面仅看个位),那么若将这个值取出作为buckets数组的索引,其对应的取值再减1就是最终该数按某个位置进行排序后在ans数组中的位置。
这个规律是否真的成立呢?我们再继续往上走试试,此时是ary[4]=24,其个位上的数为4。问题来了,我们最开始从ary数组中取ary[7]时,其个位上的值也是4啊。如果我们在取ary[4]=24时还和上面执行一样的过程,那必然会导致最终ans[5]的值由之前的74更新为24,但是这样显然是不正确的。
如果耐心一点,我们可以做一个大胆的猜想:每次在buckets数组中的某个值被取用后,我们就将这个值减1。比如在第一次遇到ary[7]=74时,其个位上的值为4,对应在buckets[ ]数组中,buckets[4]=6,此时,我们将buckets[4]自减1,然后得到buckets[4]=5,并将5作为74在ans数组中的索引;接下来,当到了ary[4]=24时,其个位上的值也为4,对应在buckets[ ]数组中,buckets[4]=5,此时,我们将buckets[4]自减1,然后得到buckets[4]=4,并将4作为24在ans数组中的索引……根据这样的规律,我们可以不断地往上推,最终你会发现,得出的ans数组和上图中给出的完全一致。
你可以将上面的ary数组内容替换成任意非负整数序列,会发现上述规律对其都将适用。
如此一来,我们就得到了桶数组buckets[ ]、排序后的数组ans[ ]与原数组ary[ ]在某个位上的关系。有了这个关系,我们就可以设计相关的算法来完成对“个位”进行基数排序的算法。拓展一下也就能完成对其他“十位”、“百位”……等位置的排序。如果把某个位(如“个位”、“十位”等)作为一个参数,就能得到一个通用的基数排序函数。

下面给出实现基数排序的完整代码(附详细解释):

/** 获取数组a中最大值** 参数说明:*     a -- 数组*     n -- 数组长度*/
int get_max(int a[], int n)
{int i, max;max = a[0];for (i = 1; i < n; i++)if (a[i] > max)max = a[i];return max;
}/** 对数组按照"某个位数"进行排序(桶排序)** 参数说明:*     a -- 数组*     n -- 数组长度*     exp -- 指数。对数组a按照该指数进行排序。** 例如,对于数组a={42, 6, 352, 671, 24, 819, 184, 76};*    (01) 当exp=1表示按照"个位"对数组a进行排序*    (02) 当exp=10表示按照"十位"对数组a进行排序*    (03) 当exp=100表示按照"百位"对数组a进行排序*    ...*/
void count_sort(int a[], int n, int exp)
{int output[n];             	//存放排序后的数组int i, buckets[10] = {0};//将数据出现的次数存储在buckets[]中for (i = 0; i < n; i++)buckets[ (a[i]/exp)%10 ]++;//更改buckets[i]。目的是让更改后的buckets[i]的值,是该数据在output[]中的位置for (i = 1; i < 10; i++)buckets[i] += buckets[i - 1];//将数据存储到临时数组output[]中for (i = n - 1; i >= 0; i--){output[buckets[ (a[i]/exp)%10 ] - 1] = a[i];buckets[ (a[i]/exp)%10 ]--;}//将排序好的数据赋值给a[]for (i = 0; i < n; i++)a[i] = output[i];
}/** 基数排序** 参数说明:*     a -- 数组*     n -- 数组长度*/
void radix_sort(int a[], int n)
{int exp;    //指数。当对数组按各位进行排序时,exp=1;按十位进行排序时,exp=10;...int max = get_max(a, n);    //数组a中的最大值//从个位开始,对数组a按"指数"进行排序for (exp = 1; max/exp > 0; exp *= 10)count_sort(a, n, exp);
}

radix_sort(a, n)的作用是对数组a进行基数排序。

  1. 首先通过get_max(a)获取数组a中的最大值。获取最大值的目的是计算出数组a的最大指数。
  2. 获取到数组a中的最大指数后,再从指数1开始,根据位数对数组a中的元素进行排序。
  3. count_sort(a, n, exp)的作用是对数组a按照指数exp进行排序。



上面给出的算法仅仅是针对非负整数序列,有同学肯定要问了,那有没有更强大的,对所有整数序列都适用的呢?当然是有的。
仔细想,在加入负数之后,对于整个序列而言,相当于新添了9种新状态:-1、-2、……、-8、-9。那么我们要想办法将这些新的状态和之前的0、1、……、8、9加以区别。
有一种很简单的办法是:将a[i]%10+10(a[i]是存放初始序列的数组),这样一来就可以将所有的负数控制在[1,9]之间,同时将所有的非负数控制在[10,19]之间。说白了就是将上面的buckets[ ]数组容量扩大即可。并且在执行a[i]%10+10后,对于其中的每个a[i]而言,相对大小都未发生改变(毕竟大家都增加了10)。因此这样处理a[i],对于sort函数而言并不会使其失去正确性。
基于这样的一种思路,下面给出适用于所有整数序列的基数排序算法(仅需要修改sort函数即可):

void sort(int a[], int n, int exp)
{int[] output = new int[n]; 				//存储"被排序数据"的临时数组int i, buckets[] = new int[20];			//负数只需要把buckets容量扩大为20个即可//将数据出现的次数存储在buckets[]中for (i = 0; i < n; i++)buckets[ (a[i]/exp)%10 + 10 ]++;//更改buckets[i]。目的是让更改后的buckets[i]的值,是该数据在output[]中的位置。for (i = 1; i < 20; i++)buckets[i] += buckets[i - 1];//将数据存储到临时数组output[]中for (i = n - 1; i >= 0; i--){output[buckets[ (a[i]/exp)%10 + 10 ] - 1] = a[i];buckets[ (a[i]/exp)%10 + 10 ]--;}//将排序好的数据赋值给a[]for (i = 0; i < n; i++)a[i] = output[i];
}



这篇关于【算法与数据结构】—— 基数排序(后缀数组基础)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861549

相关文章

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于