C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用

2024-03-30 12:52

本文主要是介绍C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、开散列的概念

1.1开散列与闭散列比较

二、开散列/哈希桶的实现

2.1开散列实现

哈希函数的模板构造

哈希表节点构造

开散列增容

插入数据

2.2代码实现


一、开散列的概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

fe028ef67fc447009dc9a8cfeb08e470.png

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

1.1开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上: 由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

二、开散列/哈希桶的实现

2.1开散列实现

哈希函数的模板构造

当数据类型不是整数时,我们需要通过哈希函数将其转换为一个size_t类型的无符号整形然后%上哈希表的容量得出一个映射值,所以需要针对不同的数据类型,来构造不同的Hashfunc来将其转换为size_t类型,这时就要用到模板特化来处理数据,尤其是字符串类型。

哈希表节点构造

同时针对set和map的不同,我们需要将hash桶的模板可以满足两种不同类型的调用,所以在参数上也要设置两个参数,如果是set传参,就让两个参数都是K,如果是map传参,第一个参数是K,第二个参数则是pair<K,V>,而在构造哈希表的node时,不管是set还是map都只需要传第二个参数过去,而hashnode也只需要用一个template<class T>来进行接收就好,然后构造初始化出T _data和一个T* _next的指针来指向桶中下一个节点。

那为什么在传参时不直接只设置一个参数呢?因为在调用find时,需要传一个值进去查找,如果是set则直接查找,如果是map则需要取出hashnode中的first与之进行比较,所以必须设置两个模板参数。

开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

插入数据

因为开散列每个位置都是一串单链表,所以在插入节点时,直接选择头插即可,头插的消耗和速度都是最小的。

2.2代码实现

#pragma once
#include<iostream>
using namespace std;
#include<vector>
#include<string>template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};// 特化
template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto e : s){hash += e;hash *= 131;}return hash;}
};
namespace hash_bucket
{//如果是unordered_set的话T=K//如果是unordered_map的话T=pair<K,V>template<class T>struct HashNode{HashNode<T>* _next;T _data;HashNode(const T& data):_next(nullptr),_data(data){}};// 前置声明,因为编译器编译时会向上进行查找,而iterator要去调用哈希表,所以需要提前进行前置声明template<class K, class T, class Keyoft, class Hash >class HashTable;//迭代器实现template<class K, class T, class Keyoft, class Hash >struct __HTIterator{typedef HashNode<T> Node;typedef HashTable<K, T, Keyoft, Hash> HT;typedef __HTIterator<K, T, Keyoft, Hash> Self;Node* _node;HT* _ht;__HTIterator(Node* node,HT* ht):_node(node),_ht(ht){}T& operator*(){return _node->_data;}Self& operator++(){//如果当前桶内还有节点if (_node->_next){_node = _node->_next;}else{//当前桶找完,就去找下一个桶Keyoft kot;Hash hs;size_t hashi = hs(kot(_node->_data)) % _ht->_tables.size();hashi++;while (hashi < _ht->_tables.size()){if (_ht->_tables[hashi]){_node = _ht->_tables[hashi];break;}hashi++;}//如果后面没有桶if (hashi == _ht->_tables.size()){_node = nullptr;}}return *this;}bool operator!=(const Self& s){return _node != s._node;}};//哈希桶搭建template<class K, class T,class Keyoft,class Hash>class HashTable{template<class K, class T, class KeyOfT, class Hash>friend struct __HTIterator;typedef HashNode<T> Node;public:typedef __HTIterator< K, T, Keyoft, Hash> iterator;HashTable(){_tables.resize(10, nullptr);_n = 0;}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}iterator begin(){for (size_t i = 0; i < _tables.size(); i++){// 找到第一个桶的第一个节点if (_tables[i]){return iterator(_tables[i], this);}}return end();}iterator end(){return iterator(nullptr, this);}//插入节点bool insert(const T& data){Keyoft kot;if (Find(kot(data)))return false;Hash hs;//负载因子到1就扩容if (_n == _tables.size()){vector<Node*> newtables(_tables.size() * 2,nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//头插到新表size_t hashi = hs(kot(cur->_data)) % newtables.size();newtables[hashi] = cur;cur = next;}_tables[i] = nullptr;}_tables.swap(newtables);}size_t hashi = hs(kot(data)) % _tables.size();Node* newnode = new Node(data);//头插newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}//查找Node* Find(const K& key){Hash hs;Keyoft kot;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key)return cur;cur = cur->_next;}return nullptr;}Node* Erase(const K& key){Hash hs;Keyoft kot;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (kot(cur->_data) == key){if (prev == nullptr){_tables[hashi] = cur->next;}else{prev->_next = cur->_next;}}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables;//指针数组size_t _n;};
}

这篇关于C++王牌结构hash:哈希表开散列(哈希桶)的实现与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/861536

相关文章

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me