量化交易入门(二十九)布林带指标实现和回测

2024-03-30 09:20

本文主要是介绍量化交易入门(二十九)布林带指标实现和回测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先我们来看一张图,这张图就是拿的苹果股票2020年1月1日到2023年12月30日的历史数据进行回测后生成的。图中绿色箭头是买入点,红色箭头是卖出点。我们看到大部分的时候是在股价较低的时候买入,在股价较高的时候卖出,好像挺不错的。

 具体怎么实现,到底结果怎么样,我们来看代码和运行结果。

示例代码

import backtrader as bt
import yfinance as yf# 定义布林带交易策略
class BollingerBandsStrategy(bt.Strategy):params = (('period', 20),('devfactor', 2))def __init__(self):self.bbands = bt.indicators.BollingerBands(period=self.params.period, devfactor=self.params.devfactor)self.order = Nonedef next(self):if self.order:returnif self.data.close[0] > self.bbands.lines.top[0]:if self.position.size == 0:commission_info = self.broker.getcommissioninfo(self.data)cash = self.broker.get_cash() - commission_info.getsize(1, self.data.close[0])size = cash // self.data.close[0]self.buy(size=size)print(f'BUY: {size} shares')elif self.data.close[0] < self.bbands.lines.bot[0]:if self.position.size > 0:size = self.position.sizeself.close(size=size)print(f'SELL: {size} shares')def notify_order(self, order):if order.status in [order.Submitted, order.Accepted]:returnif order.status in [order.Completed]:if order.isbuy():print(f'BUY executed at {self.data.num2date(order.executed.dt).date()}, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}')elif order.issell():cost = order.executed.valueprofit = order.executed.value - order.created.size * order.created.priceprofit_percent = (profit / cost) * 100print(f'SELL executed at {self.data.num2date(order.executed.dt).date()}, Price: {order.executed.price:.2f}, Cost: {cost:.2f}, Profit: {profit:.2f}, Profit %: {profit_percent:.2f}%')elif order.status in [order.Canceled, order.Margin, order.Rejected]:print('Order Canceled/Margin/Rejected')    # 创建Cerebro引擎
cerebro = bt.Cerebro()# 设置初始资金
cerebro.broker.setcash(100000.0)# 下载苹果股票数据
data = yf.download('AAPL', '2020-01-01', '2023-12-30')
data = data.dropna()# 将数据添加到Cerebro引擎中
data = bt.feeds.PandasData(dataname=data)
cerebro.adddata(data)# 添加MACD策略
cerebro.addstrategy(BollingerBandsStrategy)# 设置佣金为0.1%
cerebro.broker.setcommission(commission=0.001)# 添加分析指标
cerebro.addanalyzer(bt.analyzers.Returns, _name='returns')
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe')
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown')# 运行回测
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
results = cerebro.run()
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())# 获取回测结果
strat = results[0]
returns = strat.analyzers.returns.get_analysis()
sharpe = strat.analyzers.sharpe.get_analysis()
drawdown = strat.analyzers.drawdown.get_analysis()# 打印回测指标
print('Annualized Return: %.2f%%' % (returns['rnorm100']))
print('Sharpe Ratio: %.2f' % (sharpe['sharperatio']))
print('Max Drawdown: %.2f%%' % (drawdown['max']['drawdown']))
print('Max Drawdown Period: %s' % (drawdown['max']['len']))# 绘制回测结果
cerebro.plot()

策略逻辑

策略的主要逻辑可以总结如下:

1、计算布林带指标:

  • 使用指定的时间周期(period)和标准差因子(devfactor)计算布林带指标。
  • 布林带由三条线组成:中轨(移动平均线)、上轨(中轨+标准差)和下轨(中轨-标准差)。

2、买入信号:

  • 当前收盘价高于布林带上轨,并且当前没有持仓时,生成买入信号。
  • 计算可用资金可以买入的最大股票数量,并发出买入订单。
  • 打印买入信息,包括买入的股票数量。

3、卖出信号:

  • 当前收盘价低于布林带下轨,并且当前有持仓时,生成卖出信号。
  • 卖出当前持有的所有股票。
  • 打印卖出信息,包括卖出的股票数量。

4、风险管理:

  • 买入时使用全部可用资金购买股票,卖出时卖出所有持有的股票,没有固定的交易量限制。
  • 策略没有设置止损或止盈条件,完全依赖布林带指标的信号进行交易。

总体而言,这个策略的主要思路是:当价格突破布林带上轨时买入,突破下轨时卖出,以捕捉价格的波动和潜在的趋势变化。策略使用了简单的信号生成和资金管理规则,没有复杂的风险控制措施。

代码解析

让我们详细解析这个代码:

1、导入所需的库:

  • backtrader: 用于回测的Python框架。
  • yfinance: 用于从Yahoo Finance下载股票数据。

2、定义布林带交易策略类BollingerBandsStrategy,继承自bt.Strategy:

  • params: 策略的参数,包括布林带的时间周期、标准差因子、交易量和调试开关。
  • __init__: 策略的初始化方法,创建布林带指标和订单变量。
  • next: 策略的核心逻辑,根据布林带指标的信号执行买卖操作。
    • 如果当前有未完成的订单,则不进行新的交易。
    • 如果收盘价超过上轨,且当前有多头仓位,则卖出;如果当前没有仓位,则进行卖空操作。
    • 如果收盘价低于下轨,且当前没有仓位,则买入;如果当前有空头仓位,则进行买入平仓操作。
  • notify_order: 订单状态通知方法,用于处理订单执行结果和错误情况。

3、下载苹果股票数据:

  • 使用yfinance库下载指定时间范围内的苹果股票数据。
  • 将数据保存为CSV文件。

4、创建Cerebro引擎:

  • bt.Cerebro是Backtrader的核心类,用于管理回测的各个组件。

5、加载数据到Cerebro:

  • 使用bt.feeds.YahooFinanceCSVData从之前保存的CSV文件中加载苹果股票数据。
  • 将数据添加到Cerebro引擎中。

6、添加布林带交易策略:

  • BollingerBandsStrategy添加到Cerebro引擎中。

7、设置初始资金和佣金:

  • 使用cerebro.broker.setcash设置回测的初始资金。
  • 使用cerebro.broker.setcommission设置交易佣金。

8、运行回测:

  • 输出回测开始时的投资组合价值。
  • 调用cerebro.run()运行回测。
  • 输出回测结束后的投资组合价值。

9、绘制回测结果:

  • 调用cerebro.plot()绘制回测结果图表,包括股价、交易信号和投资组合价值等。

 运行结果分析

执行的结果:
Starting Portfolio Value: 100000.00 
Final Portfolio Value: 173356.80
Annualized Return: 14.78%
Sharpe Ratio: 0.60
Max Drawdown: 27.17%
Max Drawdown Period: 373

看到Final Portfolio Value: 173356.80这个值,好像还不错,又挣到钱了,暗暗开心一下。我们对该交易策略的表现进行以下分析:

1、收益率:

  • 起始投资组合价值为100000.00,最终投资组合价值为173356.80。
  • 总收益率为(173356.80 - 100000.00) / 100000.00 = 73.36%,表明该策略在整个回测期间实现了可观的收益。
  • 年化收益率为14.78%,表示平均每年的收益率。这个数值需要根据回测的时间跨度来解释,一般来说年化收益率越高越好。

2、夏普比率:

  • 夏普比率为0.60,表示策略的风险调整后收益。
  • 夏普比率衡量了策略的超额收益与其承担的风险之间的关系。一般来说,夏普比率越高,表示策略在承担相同风险的情况下获得了更高的超额收益。
  • 该策略的夏普比率为0.60,表明其风险调整后的收益表现尚可,但还有进一步优化的空间。

3、最大回撤:

  • 最大回撤为27.17%,表示从最高点到最低点的最大损失幅度。
  • 最大回撤反映了策略在最糟糕的情况下可能遭受的最大损失。该策略的最大回撤为27.17%,说明在某个时期内,投资组合的价值从最高点下跌了27.17%。
  • 最大回撤期为373,表示从最高点到最低点的持续时间。这意味着策略经历了较长时间的回撤期,需要注意风险管理和回撤控制。

4、总结:

  • 该布林带交易策略在回测期间实现了较高的总收益率和年化收益率,表明策略有一定的盈利能力。
  • 夏普比率为0.60,说明策略的风险调整后收益表现尚可,但还有提升的空间。
  • 最大回撤为27.17%,持续时间较长,提示需要关注策略的风险管理和回撤控制。
  • 整体而言,该策略表现出一定的潜力,但仍需要进一步优化和改进,如引入更多的风险管理措施、参数优化和组合管理等。

这篇关于量化交易入门(二十九)布林带指标实现和回测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861095

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2