【数据结构 | 图论】如何用链式前向星存图(保姆级教程,详细图解+完整代码)

本文主要是介绍【数据结构 | 图论】如何用链式前向星存图(保姆级教程,详细图解+完整代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概述

链式前向星是一种用于存储图的数据结构,特别适合于存储稀疏图,它可以有效地存储图的边和节点信息,以及边的权重。

它的主要思想是将每个节点的所有出边存储在一起,通过数组的方式连接(类似静态数组实现链表)。这种方法的优点是存储空间小,查询速度快,尤其适合于处理大规模的图数据,在一些笔试或者竞赛的场景中经常使用

下面,我们用这张图来图解一下链式前向星的存储逻辑:

在这里插入图片描述

二、前置准备

注意看这里的设定,以及我加粗的提示。

  1. head数组:head[i]存储的是节点i的第一条边的编号。这样,我们可以通过head[i]快速找到从节点i出发的所有边。

  2. next数组:next[j]存储的是编号为j的边的下一条边的编号。这样,我们可以通过next[j]快速找到从同一个节点出发的下一条边。

  3. to数组:to[j]存储的是编号为j的边的终点节点编号。这样,我们可以通过to[j]快速找到边j的终点,也就是这条边要去往哪里。

  4. weight数组:weight[j]存储的是编号为j边的权重。这样,我们可以通过weight[j]快速找到边j的权重。

  5. cnt变量:cnt用于存储边的数量,也表示边的编号。每添加一条边,cnt就会增加1。这样,我们可以通过cnt快速知道当前图中边的数量,同时我们也认为cnt是新添加边的编号

三、初始化

public static void build(int n) {cnt = 1; // 边从1开始编号Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0
}

在链式前向星中,我们使用cnt来作为边的编号,由于边的编号是从1开始的,所以初始化时我们将cnt设置为1。同时,将head数组的所有元素设置为0。因为head[i]存储的是节点i的第一条边的编号,所以,如果节点i没有出度(即没有从节点i出发的边),那么head[i]就应该为0。初始化时所有节点都没有出度,后续在添加边的时候,会更新对应的head[i]的值。

在这里插入图片描述

四、添加边(重点)

在链式前向星中添加边的操作是最核心的,它涉及到headnexttoweight数组的更新,以及边的编号cnt的自增。

在看代码之前,我们先回顾一下各个结构的下标以及值的含义:

  1. head数组:下标i表示节点编号,值head[i]表示从节点i出发的第一条边的编号。

  2. next数组:下标j表示边的编号,值next[j]表示编号为j的边的下一条边的编号。

  3. to数组:下标j表示边的编号,值to[j]表示编号为j的边的终点节点编号。

  4. weight数组:下标j表示边的编号,值weight[j]表示编号为j的边的权重。

结合上述含义,我们来看代码就很清晰了:

// (u, v, w): 有一条边,从u节点指向v节点,权重为w
// 在每一次添加边时,cnt都表示当前未分配的边的编号,添加边后cnt需++
public static void addEdge(int u, int v, int w) {next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt;++cnt;
}

首先,我们需要更新next数组。next[cnt]存储的是编号为cnt的边的下一条边的编号。在添加新边时,我们将新边的next置为旧的头边号head[u],这样就可以通过next[cnt]快速找到从节点u出发的下一条边。

然后,我们需要更新to数组,将新边的终点设置为v,这样就可以通过to[cnt]快速找到边cnt的终点。

更新weight数组也很自然,就是将新边的权重设置为w,最后,我们将节点u的头边号修改为当前新边的编号,这样就可以通过head[u]快速找到从节点u出发的第一条边。

备注:记得每添加一条边,边的编号cnt就需要增加1

五、建图

建图分为有向图与无向图,输入的参数是一个二维数组edges作为输入,这个数组的每个元素都是一个长度为3的数组,代表一条边的两个端点和这条边的权重。

// 建有向图
public static void directGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加有向边}
}// 建无向图
public static void undirectGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加边addEdge(edge[1], edge[0], edge[2]); // 添加反向边}
}

六、图解

下面这个数组提供了图的边信息,基本上题目都会给定形式的信息,让你去建图:

有一条边(u, v, w),表示从u节点指向v节点,权重为w
[[1, 6, 2],[1, 3, 57],[1, 4, 61],[2, 3, 100],[3, 5, 34],[4, 5, 13],
]

这里 u,v,w 的含义以及顺序应根据具体题目具体分析,这里的设定是(u, v, w)表示一条边从u节点指向v节点,权重为w

// 添加边:
public static void addEdge(int u, int v, int w) {next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt;++cnt;
}

下面我们图解一下,在链式前向星中,依次添加6条边到有向图中的逻辑。

在这里插入图片描述

如果看不懂,建议返回上面去看各个数组的下标以及值的含义。

添加边 {1, 6, 2}

  • head[1] = 1:节点1的第一条边的编号是1。
  • next[1] = 0:边1没有下一条边。
  • to[1] = 2:边1的终点是节点2。
  • weight[1] = 6:边1的权重是6。
  • cnt:2,表示当前边的数量是1,下一条边的编号是2。

在这里插入图片描述

添加边 {1, 3, 57}

  • head[1] = 2:节点1的第一条边的编号是2。
  • next[2] = 1:边2的下一条边是边1。
  • to[2] = 3:边2的终点是节点3。
  • weight[2] = 57:边2的权重是57。
  • cnt:3,表示当前边的数量是2,下一条边的编号是3。

在这里插入图片描述

添加边 {1, 4, 61}

  • head[1] = 3:节点1的第一条边的编号是3。
  • next[3] = 2:边3的下一条边是边2。
  • to[3] = 4:边3的终点是节点4。
  • weight[3] = 61:边3的权重是61。
  • cnt:4,表示当前边的数量是3,下一条边的编号是4。

在这里插入图片描述

添加边 {2, 3, 100}

  • head[2] = 4:节点2的第一条边的编号是4。
  • next[4] = 0:边4没有下一条边。
  • to[4] = 3:边4的终点是节点3。
  • weight[4] = 100:边4的权重是100。
  • cnt:5,表示当前边的数量是4,下一条边的编号是5。

在这里插入图片描述

添加边 {3, 5, 34}

  • head[3] = 5:节点3的第一条边的编号是5。
  • next[5] = 0:边5没有下一条边。
  • to[5] = 5:边5的终点是节点5。
  • weight[5] = 34:边5的权重是34。
  • cnt:6,表示当前边的数量是5,下一条边的编号是6。

在这里插入图片描述

添加边 {4, 5, 13}

  • head[4] = 6:节点4的第一条边的编号是6。
  • next[6] = 0:边6没有下一条边。
  • to[6] = 5:边6的终点是节点5。
  • weight[6] = 13:边6的权重是13。
  • cnt:7,表示当前边的数量是6,下一条边的编号是7。

在这里插入图片描述

七、遍历图

遍历图的逻辑也不难理解,就是对于每个节点,遍历其所有的邻居,根据next数组不断去拿到和每个节点连接的边的编号,直到没有邻居节点为止,一步步跳着找嘛。

步骤如下:

  • 对于每个节点,通过head数组找到该节点的第一条边。
  • 通过next数组找到下一条边,直到next数组的值为0,表示没有更多的边。
  • 在遍历过程中,可以通过toweight数组获取边的终点和权重。

我们用打印邻居节点的方式来验证遍历的结果:

public static void traversal(int n) {StringBuilder sb = new StringBuilder();sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");for (int i = 1; i <= n; i++) {sb.append("[").append(i).append("]: ");for (int ei = head[i]; ei > 0; ei = next[ei]) {sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重}sb.append("\n");}System.out.println(sb.toString()); // 打印结果
}

八、完整代码

package cn.zhengyiyi;import java.util.Arrays;public class Main {public static int N = 11;public static int M = 21; /*** 编号为 i 的节点,其第一条边的编号为 head[i]* 备注:如果 head[i] 为0,说明没有一条边从节点 i 出发*/public static int[] head = new int[N];/*** 编号为 i 的边,它的下一条边是 next[i],*/public static int[] next = new int[M];/*** 编号为 i 的边,前往的节点是 to[i],也就是第 i 条边的终点是 to[i]*/public static int[] to = new int[M];/*** 编号为 i 的边,权重是 weight[i]*/public static int[] weight = new int[M];/***  记录边的数量,初始时值为 1*/public static int cnt;// 初始化链式前向星public static void build(int n) {cnt = 1; // 边从1开始编号Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0}// 添加一条边:(u->v,权重为w)public static void addEdge(int u, int v, int w) {// 1. 更新next数组,将新边的next置为旧的头边号head[u],方便后续跳到旧的头边号next[cnt] = head[u];// 2. 更新to数组,设置当前新边的终点为vto[cnt] = v; // 3. 更新weight数组,设置当前边的权重wweight[cnt] = w;// 4. 更新head数组,将原先的头边号修改为当前新边head[u] = cnt;// 5. 最后边的编号要自增++cnt;}// 建立有向图public static void directGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加有向边}}// 建立无向图public static void undirectGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加边addEdge(edge[1], edge[0], edge[2]); // 无向图需要添加反向边}}// 遍历图public static void traversal(int n) {StringBuilder sb = new StringBuilder();sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");for (int i = 1; i <= n; i++) {sb.append("[").append(i).append("]: ");for (int ei = head[i]; ei > 0; ei = next[ei]) {sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重}sb.append("\n");}System.out.println(sb.toString()); // 打印结果}public static void main(String[] args) {int n = 5; // 节点数build(n); // 初始化int[][] directEdges = { // 有向图的边{ 1, 6, 2 },{ 1, 3, 57 },{ 1, 4, 61 },{ 2, 3, 100 },{ 3, 5, 34 },{ 4, 5, 13 }};directGraph(directEdges); // 建立有向图traversal(n); // 遍历有向图}
}

运行结果:

链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w
[1]: (4,61) (3,57) (6,2) 
[2]: (3,100) 
[3]: (5,34) 
[4]: (5,13) 
[5]: 

在这里插入图片描述

这篇关于【数据结构 | 图论】如何用链式前向星存图(保姆级教程,详细图解+完整代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859562

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll