k-means、DBSCAN、层次聚类等常用5中聚类方法

2024-03-29 19:48

本文主要是介绍k-means、DBSCAN、层次聚类等常用5中聚类方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 K-Means聚类
  • 2 均值漂移聚类
  • 3 具噪声基于密度的空间聚类算法
  • 4 高斯混合模型的期望最大化聚类
  • 5 凝聚层次聚类

1 K-Means聚类

基本K-Means算法的思想很简单,事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,直到质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。

在这里插入图片描述

2 均值漂移聚类

Mean-Shift聚类是基于滑动窗口的算法,试图找到数据点的密集区域。这是一种基于质心的算法,意味着其目标是定位每个簇的中心点,通过将滑动窗口的均值点作为候选点来迭代更新中心点。在后处理阶段将消除近似重复的窗口,最终形成一组中心点及其相应的簇。
在这里插入图片描述
在这里插入图片描述

与K-means聚类相比,Mean-Shift的最大优势就是可以自动发现簇的数量而不需要人工选择。簇的中心向最大密度点聚合的事实也是非常令人满意的,因为它可被非常直观地理解并很自然地契合数据驱动。

3 具噪声基于密度的空间聚类算法

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,类似于Mean-Shift,但具有一些显著的优点。
在这里插入图片描述

4 高斯混合模型的期望最大化聚类

K-Means的主要缺点之一是其简单地使用了平均值作为簇的中心。 高斯混合模型(GMMs)相比于K-Means来说有更多的灵活性。 对于GMMs,我们假设数据点是服从高斯分布的(对于用均值进行聚类,这一假设是个相对较弱的限制)。 这样,我们有两个参数来描述簇的形状:均值和标准差! 以二维为例,这意味着簇可以采用任何类型的椭圆形(因为我们在x和y方向都有标准偏差)。 因此,每个簇都有一个高斯分布。
在这里插入图片描述

5 凝聚层次聚类

分层聚类算法实际上分为两类:自上而下或自下而上。自下而上算法首先将每个数据点视为单个簇,然后不断合并(或聚合)成对的簇,直到所有簇合并成一个包含所有数据点的簇。因此自下而上的层次聚类被称为分层凝聚聚类或HAC。该簇的层次结构被表示为树(或树状图)。树的根是包含所有样本的唯一的簇,叶是仅有一个样本的簇。在进入算法步骤之前,请查看下面的图解。
在这里插入图片描述
分层聚类不要求我们指定聚类的数量,因为我们在构建一棵树,我们甚至可以选择哪个数量的簇看起来最好。另外,该算法对距离度量的选择不敏感,它们的效果都趋于相同,而对其他聚类算法而言,距离度量的选择则是至关重要的。

分层聚类方法的一个特别好的应用是源数据具有层次结构并且用户想要恢复其层次结构,其他聚类算法则无法做到这一点。这种层次聚类是以较低的效率为代价实现的,与K-Means和GMM的线性复杂性不同,它具有O(n3)的时间复杂度。

参考:
https://zhuanlan.zhihu.com/p/78798251?utm_source=qq
https://blog.csdn.net/ycy0706/article/details/90439245

这篇关于k-means、DBSCAN、层次聚类等常用5中聚类方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859481

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行