时间序列模型 ARIMA

2024-03-29 12:48
文章标签 模型 时间 序列 arima

本文主要是介绍时间序列模型 ARIMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ARIMA模型(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

statsmodels.tsa.arima_model包中有ARIMA集成好的模型,我们只需要输入p,d,q即可。

 

数据为纽约市的交通进出情况(一个txt进,一个txt出),然后已知一年365天*24小时的数据,想用ARIMA来预测,并计算MAE和RMSE来评估预测准确性。

我的data_prepare()函数是用来拼接两个文件夹里的数据的,一般只要读取一个文件夹的数据即可,返回是一个大矩阵。

其中取了数据集的前66%做训练集,后34%做测试集,与预测的结果做对比。

res()函数是输入测试矩阵和预测矩阵,计算MAE和RMSE来评估预测准确性的。

main中写的三个数组是打算遍历p,d,q找到最优值的,但是我电脑跑的太慢了,最后直接取了0,1,0。

 

import warnings
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from statsmodels.tsa.arima_model import ARIMAdef data_prepare():matrix = []file1 = "tensor_year_hour_lease.txt"file2 = "tensor_year_hour_return.txt"f1 = open(file1, "r")f2 = open(file2, "r")matrix1 = []lines1 = f1.readlines()for line in lines1:arr = line.split(",")arr = np.array(arr, dtype=int)matrix1.append(arr)f1.close()matrix2 = []lines2 = f2.readlines()for line in lines2:arr = line.split(",")arr = np.array(arr, dtype=int)matrix2.append(arr)f2.close()matrix = np.hstack((matrix1, matrix2))  # 拼接成功 输出(8760*188)return matrixdef evaluate_arima_model(X, arima_order):# 数据集的前66%作为训练集,后34%作为测试集train_size = int(len(X) * 0.66)# print("train_size",train_size)train, test = X[0:train_size], X[train_size:]history = [x for x in train]# make predictionspredictions = list()for t in range(len(test)):model = ARIMA(history, order=arima_order)model_fit = model.fit(disp=0)yhat = model_fit.forecast()[0]predictions.append(yhat)history.append(test[t])predictions = np.array(predictions)# print(predictions.shape)return predictionsdef res(test, predictions):mae = mean_absolute_error(test, predictions)mse = mean_squared_error(test, predictions)rmse = mse ** 0.5return mae, rmsedef evaluate_models(p_values, d_values, q_values):matrix = data_prepare()train_size = int(len(matrix) * 0.66)test = matrix[train_size:]best_mae, best_rmse, best_cfg = float("inf"), float("inf"), Nonefor p in p_values:for d in d_values:for q in q_values:pre = np.zeros((len(matrix)-train_size, 0))for i in range(0, 188):  # 188是列数dataset = matrix[:, i]dataset = dataset.astype('float32')order = (p, d, q)predictions = evaluate_arima_model(dataset, order)pre = np.hstack((pre, predictions))  # 每一列做一次预测,然后拼接成矩阵print("p, d, q, i:", p, d, q, i)# print(pre.shape)# print(pre)mae, rmse = res(test, pre)if mae < best_mae:best_mae, best_rmse, best_cfg = mae, rmse, orderprint('ARIMA%s MAE=%.3f RMSE=%.3f' % (order, mae, rmse))print('Best ARIMA%s MAE=%.3f RMSE=%.3f' % (best_cfg, best_mae, best_rmse))if __name__ == '__main__':p_values = [0, 1, 2, 4, 6, 8, 10]d_values = range(0, 3)q_values = range(1, 3)warnings.filterwarnings("ignore")evaluate_models(p_values, d_values, q_values)

 

这篇关于时间序列模型 ARIMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858640

相关文章

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序