时间序列模型 ARIMA

2024-03-29 12:48
文章标签 模型 时间 序列 arima

本文主要是介绍时间序列模型 ARIMA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ARIMA模型(英语:Autoregressive Integrated Moving Average model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

statsmodels.tsa.arima_model包中有ARIMA集成好的模型,我们只需要输入p,d,q即可。

 

数据为纽约市的交通进出情况(一个txt进,一个txt出),然后已知一年365天*24小时的数据,想用ARIMA来预测,并计算MAE和RMSE来评估预测准确性。

我的data_prepare()函数是用来拼接两个文件夹里的数据的,一般只要读取一个文件夹的数据即可,返回是一个大矩阵。

其中取了数据集的前66%做训练集,后34%做测试集,与预测的结果做对比。

res()函数是输入测试矩阵和预测矩阵,计算MAE和RMSE来评估预测准确性的。

main中写的三个数组是打算遍历p,d,q找到最优值的,但是我电脑跑的太慢了,最后直接取了0,1,0。

 

import warnings
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from statsmodels.tsa.arima_model import ARIMAdef data_prepare():matrix = []file1 = "tensor_year_hour_lease.txt"file2 = "tensor_year_hour_return.txt"f1 = open(file1, "r")f2 = open(file2, "r")matrix1 = []lines1 = f1.readlines()for line in lines1:arr = line.split(",")arr = np.array(arr, dtype=int)matrix1.append(arr)f1.close()matrix2 = []lines2 = f2.readlines()for line in lines2:arr = line.split(",")arr = np.array(arr, dtype=int)matrix2.append(arr)f2.close()matrix = np.hstack((matrix1, matrix2))  # 拼接成功 输出(8760*188)return matrixdef evaluate_arima_model(X, arima_order):# 数据集的前66%作为训练集,后34%作为测试集train_size = int(len(X) * 0.66)# print("train_size",train_size)train, test = X[0:train_size], X[train_size:]history = [x for x in train]# make predictionspredictions = list()for t in range(len(test)):model = ARIMA(history, order=arima_order)model_fit = model.fit(disp=0)yhat = model_fit.forecast()[0]predictions.append(yhat)history.append(test[t])predictions = np.array(predictions)# print(predictions.shape)return predictionsdef res(test, predictions):mae = mean_absolute_error(test, predictions)mse = mean_squared_error(test, predictions)rmse = mse ** 0.5return mae, rmsedef evaluate_models(p_values, d_values, q_values):matrix = data_prepare()train_size = int(len(matrix) * 0.66)test = matrix[train_size:]best_mae, best_rmse, best_cfg = float("inf"), float("inf"), Nonefor p in p_values:for d in d_values:for q in q_values:pre = np.zeros((len(matrix)-train_size, 0))for i in range(0, 188):  # 188是列数dataset = matrix[:, i]dataset = dataset.astype('float32')order = (p, d, q)predictions = evaluate_arima_model(dataset, order)pre = np.hstack((pre, predictions))  # 每一列做一次预测,然后拼接成矩阵print("p, d, q, i:", p, d, q, i)# print(pre.shape)# print(pre)mae, rmse = res(test, pre)if mae < best_mae:best_mae, best_rmse, best_cfg = mae, rmse, orderprint('ARIMA%s MAE=%.3f RMSE=%.3f' % (order, mae, rmse))print('Best ARIMA%s MAE=%.3f RMSE=%.3f' % (best_cfg, best_mae, best_rmse))if __name__ == '__main__':p_values = [0, 1, 2, 4, 6, 8, 10]d_values = range(0, 3)q_values = range(1, 3)warnings.filterwarnings("ignore")evaluate_models(p_values, d_values, q_values)

 

这篇关于时间序列模型 ARIMA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858640

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J