OpenCV二值图细化,骨骼化,求端点、交叉点

2024-03-29 02:32

本文主要是介绍OpenCV二值图细化,骨骼化,求端点、交叉点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所谓细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的形状,直到得到图像的骨架。骨架,可以理解为物体的中轴,例如一个长方形的骨架是它的长方向上的中轴线;正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。得到了骨架,就相当于突出物体的主要结构和形状信息,去除了多余信息,根据这些信息可以实现图像上特征点的检测,如端点,交叉点和拐点。

下面先介绍经典的Zhang并行快速细化算法:

    设p1点的八邻域为:

p9 p2 p3

p8 p1 p4

p7 p6 p5

(其中p1为白点也就是物体,如果以下四个条件同时满足,则删除p1,即令p1=0)

其中迭代分为两个子过程:

过程1 细化删除条件为:
(1)、2 <=N(p1) <= 6, N(x)为x的8邻域中黑点的数目
(2)、A(p1)=1,A(x)指的是将p2-p8之间按序前后分别成对值为0、1的个数(背景色:0)
(3)、p2p4p6=0
(4)、p4p6p8=0
如果同时满足以上四个条件则该点可以删除(赋值为0)。

过程2 细化删除条件为:
(1)、2 <=N(p1) <= 6, N(x)为x的8邻域中黑点的数目
(2)、A(p1)=1,A(x)指的是将p2-p8之间按序前后分别为0、1的对数(背景色:0)
(3)、p2p4p8=0
(4)、p2p6p8=0
如果同时满足以上四个条件则该点可以删除。这样反复迭代,直到获取细化图像为止。

过滤部分较为简单:

如果p2+p3+p8+p9>=1,则该点可以删除(赋值为0)。实现每两个白点之间不能紧靠在一起

检测部分比较复杂需要反复实验:
过程1 确定卷积邻域范围:

p25 p10 p11 p12 p13

p24 p9 p2 p3 p14

p23 p8 p1 p4 p15

p22 p7 p6 p5 p16

p21 p20 p19 p18 p17

(这里是使用5x5,实际上为了更好的检测需要至少6x6的卷积且为圆形)

过程2 统计卷积范围内白点个数:

如果白点个数较多,则说明p1为交叉点。

如果白点个数较少,则说明p1为端点。

过程3 对检测出的点进行合并:

如果两个点之间距离太近,取平均值。(下面代码没有实现该功能)

所有程序源代码:

#include <opencv2/opencv.hpp>  
#include <opencv2/core/core.hpp>  
#include <iostream>  
#include <vector>  
using namespace cv;
using namespace std;/**
* @brief 对输入图像进行细化,骨骼化
* @param src为输入图像,用cvThreshold函数处理过的8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白
* @param maxIterations限制迭代次数,如果不进行限制,默认为-1,代表不限制迭代次数,直到获得最终结果
* @return 为对src细化后的输出图像,格式与src格式相同,元素中只有0与1,1代表有元素,0代表为空白
*/
cv::Mat thinImage(const cv::Mat & src, const int maxIterations = -1)
{assert(src.type() == CV_8UC1);cv::Mat dst;int width = src.cols;int height = src.rows;src.copyTo(dst);int count = 0;  //记录迭代次数  while (true){count++;if (maxIterations != -1 && count > maxIterations) //限制次数并且迭代次数到达  break;std::vector<uchar *> mFlag; //用于标记需要删除的点  //对点标记  for (int i = 0; i < height; ++i){uchar * p = dst.ptr<uchar>(i);for (int j = 0; j < width; ++j){//如果满足四个条件,进行标记  //  p9 p2 p3  //  p8 p1 p4  //  p7 p6 p5  uchar p1 = p[j];if (p1 != 1) continue;uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);uchar p8 = (j == 0) ? 0 : *(p + j - 1);uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6){int ap = 0;if (p2 == 0 && p3 == 1) ++ap;if (p3 == 0 && p4 == 1) ++ap;if (p4 == 0 && p5 == 1) ++ap;if (p5 == 0 && p6 == 1) ++ap;if (p6 == 0 && p7 == 1) ++ap;if (p7 == 0 && p8 == 1) ++ap;if (p8 == 0 && p9 == 1) ++ap;if (p9 == 0 && p2 == 1) ++ap;if (ap == 1 && p2 * p4 * p6 == 0 && p4 * p6 * p8 == 0){//标记  mFlag.push_back(p + j);}}}}//将标记的点删除  for (std::vector<uchar *>::iterator i = mFlag.begin(); i != mFlag.end(); ++i){**i = 0;}//直到没有点满足,算法结束  if (mFlag.empty()){break;}else{mFlag.clear();//将mFlag清空  }//对点标记  for (int i = 0; i < height; ++i){uchar * p = dst.ptr<uchar>(i);for (int j = 0; j < width; ++j){//如果满足四个条件,进行标记  //  p9 p2 p3  //  p8 p1 p4  //  p7 p6 p5  uchar p1 = p[j];if (p1 != 1) continue;uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);uchar p8 = (j == 0) ? 0 : *(p + j - 1);uchar p2 = (i == 0) ? 0 : *(p - dst.step + j);uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - dst.step + j + 1);uchar p9 = (i == 0 || j == 0) ? 0 : *(p - dst.step + j - 1);uchar p6 = (i == height - 1) ? 0 : *(p + dst.step + j);uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + dst.step + j + 1);uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + dst.step + j - 1);if ((p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) >= 2 && (p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9) <= 6){int ap = 0;if (p2 == 0 && p3 == 1) ++ap;if (p3 == 0 && p4 == 1) ++ap;if (p4 == 0 && p5 == 1) ++ap;if (p5 == 0 && p6 == 1) ++ap;if (p6 == 0 && p7 == 1) ++ap;if (p7 == 0 && p8 == 1) ++ap;if (p8 == 0 && p9 == 1) ++ap;if (p9 == 0 && p2 == 1) ++ap;if (ap == 1 && p2 * p4 * p8 == 0 && p2 * p6 * p8 == 0){//标记  mFlag.push_back(p + j);}}}}//将标记的点删除  for (std::vector<uchar *>::iterator i = mFlag.begin(); i != mFlag.end(); ++i){**i = 0;}//直到没有点满足,算法结束  if (mFlag.empty()){break;}else{mFlag.clear();//将mFlag清空  }}return dst;
}/**
* @brief 对骨骼化图数据进行过滤,实现两个点之间至少隔一个空白像素
* @param thinSrc为输入的骨骼化图像,8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白
*/
void filterOver(cv::Mat thinSrc)
{assert(thinSrc.type() == CV_8UC1);int width = thinSrc.cols;int height = thinSrc.rows;for (int i = 0; i < height; ++i){uchar * p = thinSrc.ptr<uchar>(i);for (int j = 0; j < width; ++j){// 实现两个点之间至少隔一个像素//  p9 p2 p3  //  p8 p1 p4  //  p7 p6 p5  uchar p1 = p[j];if (p1 != 1) continue;uchar p4 = (j == width - 1) ? 0 : *(p + j + 1);uchar p8 = (j == 0) ? 0 : *(p + j - 1);uchar p2 = (i == 0) ? 0 : *(p - thinSrc.step + j);uchar p3 = (i == 0 || j == width - 1) ? 0 : *(p - thinSrc.step + j + 1);uchar p9 = (i == 0 || j == 0) ? 0 : *(p - thinSrc.step + j - 1);uchar p6 = (i == height - 1) ? 0 : *(p + thinSrc.step + j);uchar p5 = (i == height - 1 || j == width - 1) ? 0 : *(p + thinSrc.step + j + 1);uchar p7 = (i == height - 1 || j == 0) ? 0 : *(p + thinSrc.step + j - 1);if (p2 + p3 + p8 + p9 >= 1){p[j] = 0;}}}
}/**
* @brief 从过滤后的骨骼化图像中寻找端点和交叉点
* @param thinSrc为输入的过滤后骨骼化图像,8位灰度图像格式,元素中只有0与1,1代表有元素,0代表为空白
* @param raudis卷积半径,以当前像素点位圆心,在圆范围内判断点是否为端点或交叉点
* @param thresholdMax交叉点阈值,大于这个值为交叉点
* @param thresholdMin端点阈值,小于这个值为端点
* @return 为对src细化后的输出图像,格式与src格式相同,元素中只有0与1,1代表有元素,0代表为空白
*/
std::vector<cv::Point> getPoints(const cv::Mat &thinSrc, unsigned int raudis = 4, unsigned int thresholdMax = 6, unsigned int thresholdMin = 4)
{assert(thinSrc.type() == CV_8UC1);int width = thinSrc.cols;int height = thinSrc.rows;cv::Mat tmp;thinSrc.copyTo(tmp);std::vector<cv::Point> points;for (int i = 0; i < height; ++i){for (int j = 0; j < width; ++j){if (*(tmp.data + tmp.step * i + j) == 0){continue;}int count=0;for (int k = i - raudis; k < i + raudis+1; k++){for (int l = j - raudis; l < j + raudis+1; l++){if (k < 0 || l < 0||k>height-1||l>width-1){continue;}else if (*(tmp.data + tmp.step * k + l) == 1){count++;}}}if (count > thresholdMax||count<thresholdMin){Point point(j, i);points.push_back(point);}}}return points;
}int main(int argc, char*argv[])
{cv::Mat src;//获取图像  if (argc != 2){src = cv::imread("src.jpg", cv::IMREAD_GRAYSCALE);}else{src = cv::imread(argv[1], cv::IMREAD_GRAYSCALE);}if (src.empty()){std::cout << "读取文件失败!" << std::endl;return -1;}//将原图像转换为二值图像  cv::threshold(src, src, 128, 1, cv::THRESH_BINARY);//图像细化,骨骼化  cv::Mat dst = thinImage(src);//过滤细化后的图像filterOver(dst);//查找端点和交叉点  std::vector<cv::Point> points = getPoints(dst,6,9,6);//二值图转化成灰度图,并绘制找到的点dst = dst * 255;src = src * 255;vector<cv::Point>::iterator it = points.begin();for (;it != points.end(); it++){circle(dst, *it,4,255, 1);}imwrite("dst.jpg", dst);//显示图像  cv::namedWindow("src1", CV_WINDOW_AUTOSIZE);cv::namedWindow("dst1", CV_WINDOW_AUTOSIZE);cv::imshow("src1", src);cv::imshow("dst1", dst);cv::waitKey(0);
}

测试结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
细化及检测结果

整个程序运行时间大约需要0.02秒,不会占用什么资源,代码还可以进一步优化,检测出的点也没有过滤合并。对于拐点的检测可以使用局部求导,多点拟合或者傅里叶变换。有实现的朋友大家可以共享代码。

转载至:https://blog.csdn.net/xukaiwen_2016/article/details/53135866

这篇关于OpenCV二值图细化,骨骼化,求端点、交叉点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857366

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

虚拟机ubuntu配置opencv和opencv_contrib

前期准备  1.下载opencv和opencv_contrib源码 opencv-4.6.0:https://opencv.org/releases/ opencv_contrib-4.6.0:https://github.com/opencv/opencv_contrib 在ubuntu直接下载或者在window上下好传到虚拟机里都可以 自己找个地方把他们解压,个人习惯在home下新建一

Windows下使用cmake编译OpenCV

Windows下使用cmake编译OpenCV cmake下载OpenCV下载编译OpenCV cmake下载 下载地址:https://cmake.org/download/ 下载完成,点击选择路径安装即可 OpenCV下载 下载地址:https://github.com/opencv/opencv/releases/tag/4.8.1因为我们是编译OpenCV,下图选择