【图论】【 割边】【C++算法】1192. 查找集群内的关键连接

2024-03-28 18:20

本文主要是介绍【图论】【 割边】【C++算法】1192. 查找集群内的关键连接,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

图论 割边
割边和割点类似,DFS(next)的返回值 如果小于等于time[cur] 则不是割边。
割点原理及封装好的割点类(预计2024年3月11号左右发布)

LeetCoce1192. 查找集群内的关键连接

力扣数据中心有 n 台服务器,分别按从 0 到 n-1 的方式进行了编号。它们之间以 服务器到服务器 的形式相互连接组成了一个内部集群,连接是无向的。用 connections 表示集群网络,connections[i] = [a, b] 表示服务器 a 和 b 之间形成连接。任何服务器都可以直接或者间接地通过网络到达任何其他服务器。
关键连接 是在该集群中的重要连接,假如我们将它移除,便会导致某些服务器无法访问其他服务器。
请你以任意顺序返回该集群内的所有 关键连接 。

示例 1:

输入:n = 4, connections = [[0,1],[1,2],[2,0],[1,3]]
输出:[[1,3]]
解释:[[3,1]] 也是正确的。
示例 2:

输入:n = 2, connections = [[0,1]]
输出:[[0,1]]

提示:
2 <= n <= 105
n - 1 <= connections.length <= 105
0 <= ai, bi <= n - 1
ai != bi
不存在重复的连接

代码

核心代码

class CNeiBo
{
public:	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) {vector<vector<int>>  vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);}}return vNeiBo;}	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}return vNeiBo;}static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}
};//割点
class CCutPoint
{
public:CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vNodeToTime.assign(m_iSize, -1);m_vCutNewRegion.resize(m_iSize);		}void Init(const vector<vector<int>>& vNeiB){for (int i = 0; i < m_iSize; i++){if (-1 == m_vNodeToTime[i]){m_vRegionFirstTime.emplace_back(m_iTime);dfs(vNeiB, i, -1);}}}	const int m_iSize;const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳vector<bool> CalCut()const { vector<bool> ret;for (int i = 0; i < m_iSize; i++){ret.emplace_back(m_vCutNewRegion[i].size());}return ret; }//const vector < vector<pair<int, int>>>& NewRegion()const { return m_vCutNewRegion; };
protected:int dfs(const vector<vector<int>>& vNeiB, const int cur, const int parent){int iMinTime = m_vNodeToTime[cur] = m_iTime++;OnBeginDFS(cur);int iRegionCount = (-1 != parent);//根连通区域数量for (const auto& next : vNeiB[cur]) {if (next == parent){continue;}if (-1 != m_vNodeToTime[next]) {iMinTime = min(iMinTime, m_vNodeToTime[next]);continue;}const int childMinTime = dfs(vNeiB, next, cur);iMinTime = min(iMinTime, childMinTime);if (childMinTime >= m_vNodeToTime[cur]) {iRegionCount++;m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);}OnVisitNextEnd(childMinTime,cur, next);}if (iRegionCount < 2){m_vCutNewRegion[cur].clear();}return iMinTime;}virtual void OnVisitNextEnd(int childMinTime,int cur, int next) {};virtual void OnBeginDFS(int cur) {};vector<int> m_vNodeToTime;vector<int> m_vRegionFirstTime;vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域int m_iTime = 0;
};class CCutEdge : public CCutPoint
{
public:using CCutPoint::CCutPoint;vector<vector<int>> m_vCutEdges;
protected:virtual void OnVisitNextEnd(int childMinTime, int cur, int next) override {if (childMinTime > m_vNodeToTime[cur]){m_vCutEdges.emplace_back(vector<int>{ cur,next });}}
};class Solution {
public:vector<vector<int>> criticalConnections(int n, vector<vector<int>>& connections) {auto neiBo = CNeiBo::Two(n, connections, false);CCutEdge cut(neiBo);cut.Init(neiBo);return cut.m_vCutEdges;}
};

测试用例


template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n;vector<vector<int>> connections;{Solution sln;n = 2, connections = { {0,1} };auto res = sln.criticalConnections(n, connections);Assert({ { 0,1} }, res);}{Solution sln;n = 4, connections = { {0,1},{1,2},{2,0},{1,3} };auto res = sln.criticalConnections(n, connections);Assert({ { 1,3} }, res);}
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【图论】【 割边】【C++算法】1192. 查找集群内的关键连接的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856362

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

MySQL MHA集群详解(数据库高可用)

《MySQLMHA集群详解(数据库高可用)》MHA(MasterHighAvailability)是开源MySQL高可用管理工具,用于自动故障检测与转移,支持异步或半同步复制的MySQL主从架构,本... 目录mysql 高可用方案:MHA 详解与实战1. MHA 简介2. MHA 的组件组成(1)MHA

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.