【图论】【 割边】【C++算法】1192. 查找集群内的关键连接

2024-03-28 18:20

本文主要是介绍【图论】【 割边】【C++算法】1192. 查找集群内的关键连接,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

图论 割边
割边和割点类似,DFS(next)的返回值 如果小于等于time[cur] 则不是割边。
割点原理及封装好的割点类(预计2024年3月11号左右发布)

LeetCoce1192. 查找集群内的关键连接

力扣数据中心有 n 台服务器,分别按从 0 到 n-1 的方式进行了编号。它们之间以 服务器到服务器 的形式相互连接组成了一个内部集群,连接是无向的。用 connections 表示集群网络,connections[i] = [a, b] 表示服务器 a 和 b 之间形成连接。任何服务器都可以直接或者间接地通过网络到达任何其他服务器。
关键连接 是在该集群中的重要连接,假如我们将它移除,便会导致某些服务器无法访问其他服务器。
请你以任意顺序返回该集群内的所有 关键连接 。

示例 1:

输入:n = 4, connections = [[0,1],[1,2],[2,0],[1,3]]
输出:[[1,3]]
解释:[[3,1]] 也是正确的。
示例 2:

输入:n = 2, connections = [[0,1]]
输出:[[0,1]]

提示:
2 <= n <= 105
n - 1 <= connections.length <= 105
0 <= ai, bi <= n - 1
ai != bi
不存在重复的连接

代码

核心代码

class CNeiBo
{
public:	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) {vector<vector<int>>  vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);}}return vNeiBo;}	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0){vector<vector<std::pair<int, int>>> vNeiBo(n);for (const auto& v : edges){vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);if (!bDirect){vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);}}return vNeiBo;}static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext){vector<vector<int>> vNeiBo(rCount * cCount);auto Move = [&](int preR, int preC, int r, int c){if ((r < 0) || (r >= rCount)){return;}if ((c < 0) || (c >= cCount)){return;}if (funVilidCur(preR, preC) && funVilidNext(r, c)){vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);}};for (int r = 0; r < rCount; r++){for (int c = 0; c < cCount; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}return vNeiBo;}
};//割点
class CCutPoint
{
public:CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size()){m_vNodeToTime.assign(m_iSize, -1);m_vCutNewRegion.resize(m_iSize);		}void Init(const vector<vector<int>>& vNeiB){for (int i = 0; i < m_iSize; i++){if (-1 == m_vNodeToTime[i]){m_vRegionFirstTime.emplace_back(m_iTime);dfs(vNeiB, i, -1);}}}	const int m_iSize;const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳vector<bool> CalCut()const { vector<bool> ret;for (int i = 0; i < m_iSize; i++){ret.emplace_back(m_vCutNewRegion[i].size());}return ret; }//const vector < vector<pair<int, int>>>& NewRegion()const { return m_vCutNewRegion; };
protected:int dfs(const vector<vector<int>>& vNeiB, const int cur, const int parent){int iMinTime = m_vNodeToTime[cur] = m_iTime++;OnBeginDFS(cur);int iRegionCount = (-1 != parent);//根连通区域数量for (const auto& next : vNeiB[cur]) {if (next == parent){continue;}if (-1 != m_vNodeToTime[next]) {iMinTime = min(iMinTime, m_vNodeToTime[next]);continue;}const int childMinTime = dfs(vNeiB, next, cur);iMinTime = min(iMinTime, childMinTime);if (childMinTime >= m_vNodeToTime[cur]) {iRegionCount++;m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);}OnVisitNextEnd(childMinTime,cur, next);}if (iRegionCount < 2){m_vCutNewRegion[cur].clear();}return iMinTime;}virtual void OnVisitNextEnd(int childMinTime,int cur, int next) {};virtual void OnBeginDFS(int cur) {};vector<int> m_vNodeToTime;vector<int> m_vRegionFirstTime;vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域int m_iTime = 0;
};class CCutEdge : public CCutPoint
{
public:using CCutPoint::CCutPoint;vector<vector<int>> m_vCutEdges;
protected:virtual void OnVisitNextEnd(int childMinTime, int cur, int next) override {if (childMinTime > m_vNodeToTime[cur]){m_vCutEdges.emplace_back(vector<int>{ cur,next });}}
};class Solution {
public:vector<vector<int>> criticalConnections(int n, vector<vector<int>>& connections) {auto neiBo = CNeiBo::Two(n, connections, false);CCutEdge cut(neiBo);cut.Init(neiBo);return cut.m_vCutEdges;}
};

测试用例


template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n;vector<vector<int>> connections;{Solution sln;n = 2, connections = { {0,1} };auto res = sln.criticalConnections(n, connections);Assert({ { 0,1} }, res);}{Solution sln;n = 4, connections = { {0,1},{1,2},{2,0},{1,3} };auto res = sln.criticalConnections(n, connections);Assert({ { 1,3} }, res);}
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【图论】【 割边】【C++算法】1192. 查找集群内的关键连接的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856362

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序