大数据导论-大数据分析——沐雨先生

2024-03-28 18:20

本文主要是介绍大数据导论-大数据分析——沐雨先生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【实验目的】

掌握Pthon/R语言进行大数据分析,包括分类任务和聚类任务。掌握kNN、决策树、SVM分类器、kmeans聚类算法的Python或R语言编程方法。

【实验内容】

使用Python或R语言完成大数据分析任务
1、使用kNN、决策树、SVM模型,对iris数据集进行分类
2、使用kmeans聚类算法对iris数据集进行聚类

  • Python导入iris数据集方法
from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)
  • R语言导入iris数据集
data("iris")
summary(iris)

我选择使用Python语言完成实验。

1.kNN算法

import randomimport numpy as np
import operator
from sklearn.datasets import load_irisiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_namesf1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1
library = []
n = int(len(f1)*0.3)
samples = random.sample(f1, n)
for x in dataset:if x not in samples:library.append(x);def createDataSet():#四组二维特征group = np.array(library)#四组特征的标签labels = f2return group, labelsdef classify0(inX, dataSet, labels, k):''':param inX: 测试样本(arr):param dataSet: 训练数据集(arr):param labels: 类别(list):param k:(int):return: 类别'''#计算距离dataSetSize = dataSet.shape[0]  # 样本数量diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #tile(inX{数组},(dataSetSize{倍数},1{竖向})):将数组(inX)竖向(1)复制dataSetSize倍sqDiffMat = diffMat ** 2                        #先求平方sqDistances = sqDiffMat.sum(axis=1)             #再求平方和distances = sqDistances ** 0.5                  #开根号,欧式距离sortedDistIndicies = distances.argsort()  #距离从小到大排序的索引classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]  #用索引得到相应的类别classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1return max(classCount, key=lambda k: classCount[k])  # 返回频数最大的类别if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集i=0;while i<len(samples):test_class = classify0(samples[i], group, labels, 3)print("测试用例:",samples[i],"所属类别: ",test_class)i+=1#打印分类结果

2.决策树算法

# tree.py
import copy
import random
from sklearn.datasets import load_iris# 找到出现次数最多的分类名称
import operator
# 计算给定数据集的熵
from math import logdef calShannonEnt(dataSet):numEntries = len(dataSet)labelCounts = {}# 为所有可能的分类创建字典for featVec in dataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0for key in labelCounts:# 计算熵,先求pprob = float(labelCounts[key]) / numEntriesshannonEnt -= prob * log(prob, 2)return shannonEntiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_names
labels1=copy.deepcopy(labels)f1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1library = []
n = int(len(f1)*0.3)
samples = random.sample(dataset,n)
for x in dataset:if x not in samples:library.append(x)while i<len(samples):del samples[i][4]i+=1# 构造数据集
def creatDataSet():dataSet1 = librarylabels1 = labelsreturn dataSet1, labels1# 根据属性及其属性值划分数据集
def splitDataSet(dataSet, axis, value):'''dataSet : 待划分的数据集axis : 属性及特征value : 属性值及特征的hasattr值'''retDataSet = []for featVet in dataSet:if featVet[axis] == value:reducedFeatVec = featVet[:axis]reducedFeatVec.extend(featVet[axis + 1:])retDataSet.append(reducedFeatVec)return retDataSet# 选择最好的数据集划分方式,及根绝信息增益选择划分属性
def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1baseEntropy = calShannonEnt(dataSet)bestInfoGain, bestFeature = 0, -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0# 计算每种划分方式的信息熵for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeaturedef majorityCnt(classList):classCount = {}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]# 创建树的函数
def creatTree(dataSet, labels):classList = [example[-1] for example in dataSet]# 类别完全相同停止划分if classList.count(classList[0]) == len(classList):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel: {}}del (labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:sublabels = labels[:]myTree[bestFeatLabel][value] = creatTree(splitDataSet(dataSet, bestFeat, value), sublabels)return myTreedef classify(inputTree,featLabels,testVec):global classLabelfirstStr = list(inputTree.keys())[0]secondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex] == key:if type(secondDict[key]).__name__=='dict':classLabel = classify(secondDict[key],featLabels,testVec)else: classLabel = secondDict[key]return classLabelif __name__ == '__main__':myData, labels = creatDataSet()print("数据集:{}\n 标签:{}".format(myData, labels))print("该数据集下的香农熵为:{}".format(calShannonEnt(myData)))#print("划分前的数据集:{}\n \n按照“离开水是否能生存”为划分属性,得到下一层待划分的结果为:\n{}--------{}".format(myData, splitDataSet(myData, 0, 0),#splitDataSet(myData, 0, 1)))chooseBestFeatureToSplit(myData)myTree = creatTree(myData, labels)i=0print("决策树:",myTree)while (i < len(samples)):f = classify(myTree, labels1, samples[i])print("测试用例:", samples[i], "测试结果: ", f)i = i + 1{'petal length (cm)': {1.7: 0, 1.4: 0, 1.6: 0, 1.3: 0, 1.5: 0, 1.1: 0, 1.2: 0, 1.0: 0, 1.9: 0, 4.7: 1,4.5:  {'sepal length (cm)': {4.9: 2, 5.6: 1, 6.0: 1, 5.7: 1, 6.4: 1, 6.2: 1, 5.4: 1}},4.9: {'sepal width (cm)': {2.5: 1, 3.0: 2, 3.1: 1, 2.8: 2, 2.7: 2}}, 4.0: 1,5.0: {'sepal length (cm)': {6.3: 2, 5.7: 2, 6.7: 1, 6.0: 2}}, 6.0: 2, 3.5: 1, 3.0: 1, 4.6: 1, 4.4: 1, 4.1: 1,5.1: {'sepal length (cm)': {5.8: 2, 6.9: 2, 6.3: 2, 6.0: 1, 6.5: 2, 5.9: 2}}, 5.9: 2, 5.6: 2, 5.5: 2, 5.4: 2, 6.6: 2, 6.1: 2, 6.9: 2, 6.4: 2, 3.6: 1, 3.3: 1, 3.8: 1, 3.7: 1, 4.2: 1,4.8: {'sepal length (cm)': {6.0: 2, 5.9: 1, 6.8: 1, 6.2: 2}}, 4.3: 1, 5.8: 2, 5.3: 2, 5.7: 2, 5.2: 2, 6.3: 2, 6.7: 2, 3.9: 1}}

3.SVM算法

from sklearn.datasets import load_iris
from sklearn import svm
import numpy as np
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colorsiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # Y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes)x = attributes[:, 0:2]
y = target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state=1, test_size=0.3)clf = svm.SVC(kernel='linear')
clf.fit(x_train, y_train)acc = clf.predict(x_train) == y_train.flat
print('Accuracy:%f' % (np.mean(acc)))# print("SVM-训练集的准确率:", clf.score(x_train, y_train))
# # y_hat = clf.predict(x_train)
#
# print("SVM-测试集的准确率:", clf.score(x_test, y_test))
# # y_hat = clf.predict(x_test)x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
grid_test = np.stack((x1.flat, x2.flat), axis=1)print("grid_test = \n", grid_test)
grid_hat = clf.predict(grid_test)
print("grid_hat = \n", grid_hat)
grid_hat = grid_hat.reshape(x1.shape)# mpl.rcParams['font.sans-serif'] = [u'SimHei']
# mpl.rcParams['axes.unicode_minus'] = Falsecm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
# cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.plot(x[:, 0], x[:, 1], 'o', alpha=0.5, color='blue', markeredgecolor='k')
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("SVM")
plt.show()

4.Kmeans算法

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.cluster import KMeansiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes.shape)
print(attributes)
print(target)plt.style.use('seaborn')  # 样式美化x = attributes[:, 0:2]
y = target
plt.scatter(attributes[:, 0], attributes[:, 1], s=50, marker='o', label='see')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.show()est = KMeans(n_clusters=3)  # 选择聚为 x 类
est.fit(attributes)
y_kmeans = est.predict(attributes)  # 预测类别,输出为含0、1、2、3数字的数组
x0 = attributes[y_kmeans == 0]
x1 = attributes[y_kmeans == 1]
x2 = attributes[y_kmeans == 2]# 为预测结果上色并可视化
x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()plt.scatter(x0[:, 0], x0[:, 1], s=50, c="red", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="green", marker='*', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="blue", marker='+', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
centers = est.cluster_centers_  # 找出中心
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)  # 绘制中心点
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("kmeans")
plt.legend(loc=2)
plt.show()

这篇关于大数据导论-大数据分析——沐雨先生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856359

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal