大数据导论-大数据分析——沐雨先生

2024-03-28 18:20

本文主要是介绍大数据导论-大数据分析——沐雨先生,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【实验目的】

掌握Pthon/R语言进行大数据分析,包括分类任务和聚类任务。掌握kNN、决策树、SVM分类器、kmeans聚类算法的Python或R语言编程方法。

【实验内容】

使用Python或R语言完成大数据分析任务
1、使用kNN、决策树、SVM模型,对iris数据集进行分类
2、使用kmeans聚类算法对iris数据集进行聚类

  • Python导入iris数据集方法
from sklearn.datasets import load_iris
iris=load_iris()
attributes=iris.data #获取属性数据
#获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target=iris.target
labels=iris.feature_names#获取类别名字
print(labels)
print(attributes)
print(target)
  • R语言导入iris数据集
data("iris")
summary(iris)

我选择使用Python语言完成实验。

1.kNN算法

import randomimport numpy as np
import operator
from sklearn.datasets import load_irisiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_namesf1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1
library = []
n = int(len(f1)*0.3)
samples = random.sample(f1, n)
for x in dataset:if x not in samples:library.append(x);def createDataSet():#四组二维特征group = np.array(library)#四组特征的标签labels = f2return group, labelsdef classify0(inX, dataSet, labels, k):''':param inX: 测试样本(arr):param dataSet: 训练数据集(arr):param labels: 类别(list):param k:(int):return: 类别'''#计算距离dataSetSize = dataSet.shape[0]  # 样本数量diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #tile(inX{数组},(dataSetSize{倍数},1{竖向})):将数组(inX)竖向(1)复制dataSetSize倍sqDiffMat = diffMat ** 2                        #先求平方sqDistances = sqDiffMat.sum(axis=1)             #再求平方和distances = sqDistances ** 0.5                  #开根号,欧式距离sortedDistIndicies = distances.argsort()  #距离从小到大排序的索引classCount = {}for i in range(k):voteIlabel = labels[sortedDistIndicies[i]]  #用索引得到相应的类别classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1return max(classCount, key=lambda k: classCount[k])  # 返回频数最大的类别if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集i=0;while i<len(samples):test_class = classify0(samples[i], group, labels, 3)print("测试用例:",samples[i],"所属类别: ",test_class)i+=1#打印分类结果

2.决策树算法

# tree.py
import copy
import random
from sklearn.datasets import load_iris# 找到出现次数最多的分类名称
import operator
# 计算给定数据集的熵
from math import logdef calShannonEnt(dataSet):numEntries = len(dataSet)labelCounts = {}# 为所有可能的分类创建字典for featVec in dataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0.0for key in labelCounts:# 计算熵,先求pprob = float(labelCounts[key]) / numEntriesshannonEnt -= prob * log(prob, 2)return shannonEntiris = load_iris()
attributes=iris.data
target=iris.target
labels = iris.feature_names
labels1=copy.deepcopy(labels)f1 = attributes.tolist()
f2 = target.tolist()
i=0
dataset=[]
while i < len(attributes):f1[i].append(f2[i])dataset.append(f1[i])i = i+1library = []
n = int(len(f1)*0.3)
samples = random.sample(dataset,n)
for x in dataset:if x not in samples:library.append(x)while i<len(samples):del samples[i][4]i+=1# 构造数据集
def creatDataSet():dataSet1 = librarylabels1 = labelsreturn dataSet1, labels1# 根据属性及其属性值划分数据集
def splitDataSet(dataSet, axis, value):'''dataSet : 待划分的数据集axis : 属性及特征value : 属性值及特征的hasattr值'''retDataSet = []for featVet in dataSet:if featVet[axis] == value:reducedFeatVec = featVet[:axis]reducedFeatVec.extend(featVet[axis + 1:])retDataSet.append(reducedFeatVec)return retDataSet# 选择最好的数据集划分方式,及根绝信息增益选择划分属性
def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1baseEntropy = calShannonEnt(dataSet)bestInfoGain, bestFeature = 0, -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0.0# 计算每种划分方式的信息熵for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif (infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeaturedef majorityCnt(classList):classCount = {}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]# 创建树的函数
def creatTree(dataSet, labels):classList = [example[-1] for example in dataSet]# 类别完全相同停止划分if classList.count(classList[0]) == len(classList):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel: {}}del (labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:sublabels = labels[:]myTree[bestFeatLabel][value] = creatTree(splitDataSet(dataSet, bestFeat, value), sublabels)return myTreedef classify(inputTree,featLabels,testVec):global classLabelfirstStr = list(inputTree.keys())[0]secondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex] == key:if type(secondDict[key]).__name__=='dict':classLabel = classify(secondDict[key],featLabels,testVec)else: classLabel = secondDict[key]return classLabelif __name__ == '__main__':myData, labels = creatDataSet()print("数据集:{}\n 标签:{}".format(myData, labels))print("该数据集下的香农熵为:{}".format(calShannonEnt(myData)))#print("划分前的数据集:{}\n \n按照“离开水是否能生存”为划分属性,得到下一层待划分的结果为:\n{}--------{}".format(myData, splitDataSet(myData, 0, 0),#splitDataSet(myData, 0, 1)))chooseBestFeatureToSplit(myData)myTree = creatTree(myData, labels)i=0print("决策树:",myTree)while (i < len(samples)):f = classify(myTree, labels1, samples[i])print("测试用例:", samples[i], "测试结果: ", f)i = i + 1{'petal length (cm)': {1.7: 0, 1.4: 0, 1.6: 0, 1.3: 0, 1.5: 0, 1.1: 0, 1.2: 0, 1.0: 0, 1.9: 0, 4.7: 1,4.5:  {'sepal length (cm)': {4.9: 2, 5.6: 1, 6.0: 1, 5.7: 1, 6.4: 1, 6.2: 1, 5.4: 1}},4.9: {'sepal width (cm)': {2.5: 1, 3.0: 2, 3.1: 1, 2.8: 2, 2.7: 2}}, 4.0: 1,5.0: {'sepal length (cm)': {6.3: 2, 5.7: 2, 6.7: 1, 6.0: 2}}, 6.0: 2, 3.5: 1, 3.0: 1, 4.6: 1, 4.4: 1, 4.1: 1,5.1: {'sepal length (cm)': {5.8: 2, 6.9: 2, 6.3: 2, 6.0: 1, 6.5: 2, 5.9: 2}}, 5.9: 2, 5.6: 2, 5.5: 2, 5.4: 2, 6.6: 2, 6.1: 2, 6.9: 2, 6.4: 2, 3.6: 1, 3.3: 1, 3.8: 1, 3.7: 1, 4.2: 1,4.8: {'sepal length (cm)': {6.0: 2, 5.9: 1, 6.8: 1, 6.2: 2}}, 4.3: 1, 5.8: 2, 5.3: 2, 5.7: 2, 5.2: 2, 6.3: 2, 6.7: 2, 3.9: 1}}

3.SVM算法

from sklearn.datasets import load_iris
from sklearn import svm
import numpy as np
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colorsiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # Y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes)x = attributes[:, 0:2]
y = target
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, y, random_state=1, test_size=0.3)clf = svm.SVC(kernel='linear')
clf.fit(x_train, y_train)acc = clf.predict(x_train) == y_train.flat
print('Accuracy:%f' % (np.mean(acc)))# print("SVM-训练集的准确率:", clf.score(x_train, y_train))
# # y_hat = clf.predict(x_train)
#
# print("SVM-测试集的准确率:", clf.score(x_test, y_test))
# # y_hat = clf.predict(x_test)x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
grid_test = np.stack((x1.flat, x2.flat), axis=1)print("grid_test = \n", grid_test)
grid_hat = clf.predict(grid_test)
print("grid_hat = \n", grid_hat)
grid_hat = grid_hat.reshape(x1.shape)# mpl.rcParams['font.sans-serif'] = [u'SimHei']
# mpl.rcParams['axes.unicode_minus'] = Falsecm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
# cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.plot(x[:, 0], x[:, 1], 'o', alpha=0.5, color='blue', markeredgecolor='k')
plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolors='none', zorder=10)
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("SVM")
plt.show()

4.Kmeans算法

from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.cluster import KMeansiris = load_iris()
attributes = iris.data  # 获取属性数据 X
# 获取类别数据,这里注意的是已经经过了处理,target里0、1、2分别代表三种类别
target = iris.target  # y
labels = iris.feature_names  # 获取类别名字
print(labels)
print(attributes.shape)
print(attributes)
print(target)plt.style.use('seaborn')  # 样式美化x = attributes[:, 0:2]
y = target
plt.scatter(attributes[:, 0], attributes[:, 1], s=50, marker='o', label='see')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
plt.show()est = KMeans(n_clusters=3)  # 选择聚为 x 类
est.fit(attributes)
y_kmeans = est.predict(attributes)  # 预测类别,输出为含0、1、2、3数字的数组
x0 = attributes[y_kmeans == 0]
x1 = attributes[y_kmeans == 1]
x2 = attributes[y_kmeans == 2]# 为预测结果上色并可视化
x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()plt.scatter(x0[:, 0], x0[:, 1], s=50, c="red", marker='o', label='label0', cmap='viridis')
plt.scatter(x1[:, 0], x1[:, 1], s=50, c="green", marker='*', label='label1', cmap='viridis')
plt.scatter(x2[:, 0], x2[:, 1], s=50, c="blue", marker='+', label='label2', cmap='viridis')
plt.xlabel(labels[0])
plt.ylabel(labels[1])
centers = est.cluster_centers_  # 找出中心
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5)  # 绘制中心点
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title("kmeans")
plt.legend(loc=2)
plt.show()

这篇关于大数据导论-大数据分析——沐雨先生的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/856359

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加