本文主要是介绍Day23|二叉树part09:669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、总结篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
669. 修剪二叉搜索树
一刷完全没有思路,现在有点思路了,但是还是独立写不出来。
class Solution {public TreeNode delete(TreeNode node, int low, int high){if(node == null){return null;}if(node.val < low){return delete(node.right, low, high);}else if(node.val > high){return delete(node.left, low, high);}node.left = delete(node.left, low, high);node.right = delete(node.right, low, high);return node;}public TreeNode trimBST(TreeNode root, int low, int high) {return delete(root, low, high);}
}
- 如果node(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。
所以,如果当前节点的值小于low,那么它的左子树中的所有节点的值也一定小于low。因此,我们可以放心地舍弃当前节点及其左子树,然后在右子树中递归寻找满足条件的节点。
我们会删除那些值不在给定范围内的节点,但是这个“删除”实际上是在寻找和构建新的二叉搜索树,而不是真正意义上的删除操作
108.将有序数组转换为二叉搜索树
class Solution {public void testSortedArrayToBST() {// 创建一个二叉搜索树int[] nums = new int[]{-10,-3,0,5,9};TreeNode root = sortedArrayToBST(nums);System.out.println(root.val);}public TreeNode buildBST(int[] nums, int i, int j){if(i > j){return null;}int middle = (i + j) / 2;TreeNode node = new TreeNode(nums[middle]);node.left = buildBST(nums, i, middle - 1);node.right = buildBST(nums, middle + 1, j);return node;}public TreeNode sortedArrayToBST(int[] nums) {return buildBST(nums, 0, nums.length - 1);}
}
- 这里记得传入的是0, nums.length - 1,不然会越界;
538.把二叉搜索树转换为累加树
看着很难,没想到这么简单!记住遍历顺序是中序但是右中左,用一个sum维护总和。
class Solution {private int sum = 0;public void traversal(TreeNode node){if(node == null){return;}traversal(node.right);sum += node.val;node.val = sum;traversal(node.left);return;}public TreeNode convertBST(TreeNode root) {traversal(root);return root;}
}
- 为什么是右根左,因为二叉树左小右大。
如果我们按照右-根-左的顺序遍历并更新节点值,那么当我们访问一个节点时,我们已经访问过所有大于该节点值的节点,并且已经计算了它们的和。因此,我们可以直接使用这个和来更新当前节点的值。
114. 二叉树转化为链表
- 注意
flatten
函数的签名,返回类型为void
,也就是说题目希望我们在原地把二叉树拉平成链表。 - 否则可以采用这样的方法:
class Solution {private TreeNode dummy = new TreeNode(-1);private TreeNode p = dummy;public void traversal(TreeNode node){if(node == null){return;}p.right = new TreeNode(node.val);p = p.right;traversal(node.left);traversal(node.right);}public void flatten(TreeNode root) {traversal(root);root = dummy.right;}
}
(但是运行后发现并没有修改root的值,这是因为:
,flatten 方法试图修改 root 的引用,但是在 Java 中,参数传递是按值传递的,这意味着你只是复制了 root 的引用,而不是引用本身。因此,当你修改 root 时,你只是修改了这个复制的引用,而不是原始的 root 引用。
- 因为只能在树上修改,方法是先把左右子树拉平,再把右子树的平序列接到左子树的平序列下面:
class Solution {public void traversal(TreeNode node){if(node == null){return;}//拉平traversal(node.left);traversal(node.right);//保存当前节点的左子节点和右子节点的引用。TreeNode left = node.left;TreeNode right = node.right;node.left = null;node.right = left;//接上TreeNode p = node;while (p.right != null) {p = p.right;}p.right = right;}public void flatten(TreeNode root) {traversal(root);}
}
二叉树总结篇
求二叉树的属性
- 二叉树:是否对称(opens new window)
- 递归:后序,比较的是根节点的左子树与右子树是不是相互翻转
- 迭代:使用队列/栈将两个节点顺序放入容器中进行比较
- 二叉树:求最大深度(opens new window)
- 递归:后序,求根节点最大高度就是最大深度,通过递归函数的返回值做计算树的高度
- 迭代:层序遍历
- 二叉树:求最小深度(opens new window)
- 递归:后序,求根节点最小高度就是最小深度,注意最小深度的定义
- 迭代:层序遍历
- 二叉树:求有多少个节点(opens new window)
- 递归:后序,通过递归函数的返回值计算节点数量
- 迭代:层序遍历
- 二叉树:是否平衡(opens new window)
- 递归:后序,注意后序求高度和前序求深度,递归过程判断高度差
- 迭代:效率很低,不推荐
- 二叉树:找所有路径(opens new window)
- 递归:前序,方便让父节点指向子节点,涉及回溯处理根节点到叶子的所有路径
- 迭代:一个栈模拟递归,一个栈来存放对应的遍历路径
- 二叉树:递归中如何隐藏着回溯(opens new window)
- 详解二叉树:找所有路径 (opens new window)中递归如何隐藏着回溯
- 二叉树:求左叶子之和(opens new window)
- 递归:后序,必须三层约束条件,才能判断是否是左叶子。
- 迭代:直接模拟后序遍历
- 二叉树:求左下角的值(opens new window)
- 递归:顺序无所谓,优先左孩子搜索,同时找深度最大的叶子节点。
- 迭代:层序遍历找最后一行最左边
- 二叉树:求路径总和(opens new window)
- 递归:顺序无所谓,递归函数返回值为bool类型是为了搜索一条边,没有返回值是搜索整棵树。
- 迭代:栈里元素不仅要记录节点指针,还要记录从头结点到该节点的路径数值总和
#二叉树的修改与构造
- 翻转二叉树(opens new window)
- 递归:前序,交换左右孩子
- 迭代:直接模拟前序遍历
- 构造二叉树(opens new window)
- 递归:前序,重点在于找分割点,分左右区间构造
- 迭代:比较复杂,意义不大
- 构造最大的二叉树(opens new window)
- 递归:前序,分割点为数组最大值,分左右区间构造
- 迭代:比较复杂,意义不大
- 合并两个二叉树(opens new window)
- 递归:前序,同时操作两个树的节点,注意合并的规则
- 迭代:使用队列,类似层序遍历
#求二叉搜索树的属性
- 二叉搜索树中的搜索(opens new window)
- 递归:二叉搜索树的递归是有方向的
- 迭代:因为有方向,所以迭代法很简单
- 是不是二叉搜索树(opens new window)
- 递归:中序,相当于变成了判断一个序列是不是递增的
- 迭代:模拟中序,逻辑相同
- 求二叉搜索树的最小绝对差(opens new window)
- 递归:中序,双指针操作
- 迭代:模拟中序,逻辑相同
- 求二叉搜索树的众数(opens new window)
- 递归:中序,清空结果集的技巧,遍历一遍便可求众数集合
- 二叉搜索树转成累加树(opens new window)
- 递归:中序,双指针操作累加
- 迭代:模拟中序,逻辑相同
#二叉树公共祖先问题
- 二叉树的公共祖先问题(opens new window)
- 递归:后序,回溯,找到左子树出现目标值,右子树节点目标值的节点。
- 迭代:不适合模拟回溯
- 二叉搜索树的公共祖先问题(opens new window)
- 递归:顺序无所谓,如果节点的数值在目标区间就是最近公共祖先
- 迭代:按序遍历
#二叉搜索树的修改与构造
- 二叉搜索树中的插入操作(opens new window)
- 递归:顺序无所谓,通过递归函数返回值添加节点
- 迭代:按序遍历,需要记录插入父节点,这样才能做插入操作
- 二叉搜索树中的删除操作(opens new window)
- 递归:前序,想清楚删除非叶子节点的情况
- 迭代:有序遍历,较复杂
- 修剪二叉搜索树(opens new window)
- 递归:前序,通过递归函数返回值删除节点
- 迭代:有序遍历,较复杂
- 构造二叉搜索树(opens new window)
- 递归:前序,数组中间节点分割
- 迭代:较复杂,通过三个队列来模拟
这篇关于Day23|二叉树part09:669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、总结篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!