HDU2242 考研路茫茫——空调教室 解题报告【边双联通分量+树上dp】

本文主要是介绍HDU2242 考研路茫茫——空调教室 解题报告【边双联通分量+树上dp】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem Description
众所周知,HDU的考研教室是没有空调的,于是就苦了不少不去图书馆的考研仔们。Lele也是其中一个。而某教室旁边又摆着两个未装上的空调,更是引起人们无限YY。
一个炎热的下午,Lele照例在教室睡觉的时候,竟然做起了空调教室的美梦。
Lele梦到学校某天终于大发慈悲给某个教室安上了一个空调。而且建造了了M条通气管道,让整个教学楼的全部教室都直接或间接和空调教室连通上,构成了教室群,于是,全部教室都能吹到空调了。
不仅仅这样,学校发现教室人数越来越多,单单一个空调已经不能满足大家的需求。于是,学校决定封闭掉一条通气管道,把全部教室分成两个连通的教室群,再在那个没有空调的教室群里添置一个空调。
当然,为了让效果更好,学校想让这两个教室群里的学生人数尽量平衡。于是学校找到了你,问你封闭哪条通气管道,使得两个教室群的人数尽量平衡,并且输出人数差值的绝对值。
Input
本题目包含多组数据,请处理到文件结束。
每组测试第一行包含两个整数N和M(0 < N < = 10000,0< M<20000)。其中N表示教室的数目(教室编号从0到N-1),M表示通气管道的数目。
第二行有N个整数Vi(0<=Vi<=1000),分别代表每个教室的人数。
接下来有M行,每行两个整数Ai,Bi(0<=Ai,Bi < N),表示教室Ai和教室Bi之间建了一个通气管道。
Output
对于每组数据,请在一行里面输出所求的差值。
如果不管封闭哪条管道都不能把教室分成两个教室群,就输出”impossible”。
Sample Input
4 3
1 1 1 1
0 1
1 2
2 3
4 3
1 2 3 5
0 1
1 2
2 3
Sample Output
0
1
解题报告
我们不难看出,题目中描述的“教室群”就是边双联通分量的意思,由此我们必然需要tarjan来找边双联通分量。找到了过后,我们把他们缩点后,搞一个树上dp,由于我们希望人数的差值最小,所以我们就用dp[u]来记录这个点u到根节点后到根节点的边权,如果我们在已经找到的边双联通分量处割一刀,那么差值就是abs(总的权值-2*dp[u])。
此外,我在建邻接表的时候,

void build(int u,int v)
{ed[num].v=v;ed[num].id=0;ed[num].next=head[u];head[u]=num++;
}

这样写就能过

void build(int u,int v)
{ed[++num].v=v;ed[num].id=0;ed[num].next=head[u];head[u]=num;
}

这样写就会MLE,求解
树上dp

void dfs(int u,int f)
{dp[u]=sum[u];for(int i=0;i<G[u].size();++i){int v=G[u][i];if(v==f)continue;dfs(v,u);dp[u]+=dp[v];ans=min(ans,abs(sumw-dp[v]-dp[v]));}
}

这样写就能过

void dfs(int u,int f)
{dp[u]=sum[u];for(int i=0;i<G[u].size();++i){int v=G[u][i];if(v==f)continue;dfs(v,u);dp[u]+=dp[v];}ans=min(ans,abs(sumw-dp[u]-dp[u]));
}

这样写就会WA…
正是因为如此,这道题的提交记录简直感人

就像古人讲的:“敢同恶鬼争高下,不向霸王让寸分”,就是要有这种精神!
代码如下:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int N=5e4,M=4e4,inf=2e9;
#pragma comment(linker, "/STACK:102400000,102400000")
struct edge
{int v,id,next; 
}ed[N*4+5];
int n,m,sumw,ans;
int w[N+5],sum[N+5],dp[N+5];
int head[M+5],num;
int uu[N+5],vv[N+5];
int flag[N+5],dfn[N+5],sta[N+5],low[N+5],bl[N+5],idc,cnt,top;
vector<int>G[N+5];
void build(int u,int v)
{ed[num].v=v;ed[num].id=0;ed[num].next=head[u];head[u]=num++;
}
void tarjan(int u,int f)
{dfn[u]=low[u]=++idc;flag[sta[++top]=u]=1;for(int i=head[u];i!=-1;i=ed[i].next){int v=ed[i].v;if(ed[i].id)continue;ed[i].id=ed[i^1].id=1;//重边有关问题 if(!dfn[v]){tarjan(v,u);low[u]=min(low[u],low[v]);}else if(flag[v])low[u]=min(low[u],dfn[v]);}if(low[u]==dfn[u]){cnt++;do{flag[sta[top]]=0;bl[sta[top]]=cnt;sum[cnt]+=w[sta[top]];}while(u!=sta[top--]);}
}
void dfs(int u,int f)
{dp[u]=sum[u];for(int i=0;i<G[u].size();++i){int v=G[u][i];if(v==f)continue;dfs(v,u);dp[u]+=dp[v];ans=min(ans,abs(sumw-dp[v]-dp[v]));}
}
void init()
{ans=inf,num=0,top=0,idc=0,cnt=0,sumw=0;memset(head,-1,sizeof(head));memset(dfn,0,sizeof(dfn));memset(sum,0,sizeof(sum));
}
int main()
{while(~scanf("%d%d",&n,&m)){init();for(int i=1;i<=n;i++)scanf("%d",&w[i]),sumw+=w[i];for(int i=1;i<=m;i++){int u,v;scanf("%d%d",&u,&v);++u,++v;build(u,v),build(v,u);uu[i]=u,vv[i]=v;}for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i,-1);for(int i=0;i<=cnt;i++)G[i].clear();for(int i=1;i<=m;i++){int u=bl[uu[i]],v=bl[vv[i]];if(u==v)continue;G[u].push_back(v);G[v].push_back(u);}dfs(1,0);if(ans==inf)printf("impossible\n");else printf("%d\n",ans);}return 0;
}

这篇关于HDU2242 考研路茫茫——空调教室 解题报告【边双联通分量+树上dp】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855905

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o