AUTOML_NNI案例之 1.pytorch——minist 超参优化

2024-03-28 12:38

本文主要是介绍AUTOML_NNI案例之 1.pytorch——minist 超参优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.代码文件

https://github.com/microsoft/nni/tree/master/examples/trials/mnist-pytorch

主要包括,配置文件config_windows.yml和minist.py文件,搜索空间文件search_space.json文件。

2.config_windows.ymal配置文件

配置文件中包设置了trial次数和时间,要起训练的脚本,以及搜索空间

authorName: default
experimentName: example_mnist_pytorch#本次实验名称
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json
#choice: true, false
useAnnotation: false
tuner:#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner#SMAC (SMAC should be installed through nnictl)builtinTunerName: TPEclassArgs:#choice: maximize, minimizeoptimize_mode: maximize
trial:command: python mnist.pycodeDir: .gpuNum: 0

3.搜索空间 search_space.json

其中包括可搜索超参空间。

有常见的“batch_size”,隐层数量"hideen_size",学习率"lr",loss优化的动量"momentum"

{"batch_size": {"_type":"choice", "_value": [16, 32, 64, 128]},"hidden_size":{"_type":"choice","_value":[128, 256, 512, 1024]},"lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},"momentum":{"_type":"uniform","_value":[0, 1]}
}

4.工程代码mnist.py

前面搭建网络,加载数据操作都很常规,代码写的也很nice,简单易懂。

关键在后面几句

 # get parameters form tuner
        tuner_params = nni.get_next_parameter()
        logger.debug(tuner_params)
        params = vars(merge_parameter(get_params(), tuner_params))#
        print(params)
        main(params)

"""
A deep MNIST classifier using convolutional layers.This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""import os
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from nni.utils import merge_parameter
from torchvision import datasets, transformslogger = logging.getLogger('mnist_AutoML')class Net(nn.Module):def __init__(self, hidden_size):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 20, 5, 1)self.conv2 = nn.Conv2d(20, 50, 5, 1)self.fc1 = nn.Linear(4*4*50, hidden_size)self.fc2 = nn.Linear(hidden_size, 10)def forward(self, x):x = F.relu(self.conv1(x))x = F.max_pool2d(x, 2, 2)x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2, 2)x = x.view(-1, 4*4*50)x = F.relu(self.fc1(x))x = self.fc2(x)return F.log_softmax(x, dim=1)def train(args, model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:breakdata, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output, target)loss.backward()optimizer.step()if batch_idx % args['log_interval'] == 0:logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(args, model, device, test_loader):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)# sum up batch losstest_loss += F.nll_loss(output, target, reduction='sum').item()# get the index of the max log-probabilitypred = output.argmax(dim=1, keepdim=True)correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)accuracy = 100. * correct / len(test_loader.dataset)logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset), accuracy))return accuracydef main(args):use_cuda = not args['no_cuda'] and torch.cuda.is_available()torch.manual_seed(args['seed'])device = torch.device("cuda" if use_cuda else "cpu")kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}data_dir = args['data_dir']train_loader = torch.utils.data.DataLoader(datasets.MNIST(data_dir, train=True, download=True,transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=args['batch_size'], shuffle=True, **kwargs)test_loader = torch.utils.data.DataLoader(datasets.MNIST(data_dir, train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=1000, shuffle=True, **kwargs)hidden_size = args['hidden_size']model = Net(hidden_size=hidden_size).to(device)optimizer = optim.SGD(model.parameters(), lr=args['lr'],momentum=args['momentum'])for epoch in range(1, args['epochs'] + 1):train(args, model, device, train_loader, optimizer, epoch)test_acc = test(args, model, device, test_loader)# report intermediate resultnni.report_intermediate_result(test_acc)logger.debug('test accuracy %g', test_acc)logger.debug('Pipe send intermediate result done.')# report final resultnni.report_final_result(test_acc)logger.debug('Final result is %g', test_acc)logger.debug('Send final result done.')def get_params():# Training settingsparser = argparse.ArgumentParser(description='PyTorch MNIST Example')parser.add_argument("--data_dir", type=str,default='./data', help="data directory")parser.add_argument('--batch_size', type=int, default=64, metavar='N',help='input batch size for training (default: 64)')parser.add_argument("--batch_num", type=int, default=None)parser.add_argument("--hidden_size", type=int, default=512, metavar='N',help='hidden layer size (default: 512)')parser.add_argument('--lr', type=float, default=0.01, metavar='LR',help='learning rate (default: 0.01)')parser.add_argument('--momentum', type=float, default=0.5, metavar='M',help='SGD momentum (default: 0.5)')parser.add_argument('--epochs', type=int, default=10, metavar='N',help='number of epochs to train (default: 10)')parser.add_argument('--seed', type=int, default=1, metavar='S',help='random seed (default: 1)')parser.add_argument('--no_cuda', action='store_true', default=False,help='disables CUDA training')parser.add_argument('--log_interval', type=int, default=1000, metavar='N',help='how many batches to wait before logging training status')args, _ = parser.parse_known_args()return argsif __name__ == '__main__':try:# get parameters form tunertuner_params = nni.get_next_parameter()logger.debug(tuner_params)params = vars(merge_parameter(get_params(), tuner_params))print(params)main(params)except Exception as exception:logger.exception(exception)raise


 

这篇关于AUTOML_NNI案例之 1.pytorch——minist 超参优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855644

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st