langchain调用语言模型chatglm4从智谱AI

2024-03-27 10:12

本文主要是介绍langchain调用语言模型chatglm4从智谱AI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

​0.langchain agent 原理

ReAct

1.langchain agent使用chatgpt调用tools的源代码

2.自定义本地语言模型的代码

3.其他加速方法


背景:如果使用openai的chatgpt4进行语言问答,是需要从国内到国外的一个客户请求-->openai服务器response的一个过程,尽管openai的算力很强,计算速度很快,但这个国内外网络的信息传输存在一定的延迟和不稳定现象。

可能的解决办法:调用本地语言模型,这样就不需要去访问openai的服务器了,也就没了网络传输。

0.langchain agent 原理

本质:llm推理-->推理结果和tools的描述计算相似度-->top 1 tool-->行动

在 LangChain 中,Agent 是一个代理,接收用户的输入,采取相应的行动然后返回行动的结果。

官方也提供了对应的 Agent,包括 OpenAI Functions Agent、Plan-and-execute Agent、Self Ask With Search 类 AutoGPT 的 Agent 等。

ReAct

基于 ReAct 原理来实现的 Agent。

https://react-lm.github.io/

https://github.com/ysymyth/ReAct

1.langchain agent使用chatgpt调用tools的源代码

主要关注agent是如何调用tools的

主要的执行类:agentExecutor

本质是agent就是一个特殊的chain

执行chain

在agentexcutor这个类里面,因为agent执行的是思考(llm)-->行为(tools)-->再根据结果再思考-->再行为这样的一个循环过程。即llm大脑思考用户的问题,然后计划方案,然后执行行为,根据行为结果思考是否解决问题,如果没有则继续思考然后继续执行行为,这样的逻辑过程。

使用llm来思考决定使用什么工具

又到了这里,因为llm也是chain,langchain的核心就是所有的都是chain,然后组合起来

终于看到了client的request了,这就是我们发送请求给openai

send:发送请求最后结果如下:

agent调用工具

本质是llm会根据用户的输入和tools的函数的功能描述来选择工具。逻辑是先把描述的语句和用户输入做embedding为token,然后做attention(余弦相似度计算),然后把相似度分数排序,选择相似度最高的。我们这里的用户输入是:告诉我长城在哪,和meta_case2的描述最接近(因为里面有"地点在哪"这个词),所以选择了这个工具。但并不符合我们的意图,所以llm并不能理解意图,只能做相似度计算,所以tools的函数功能描述非常重要。

关于我们函数功能描述的模板:

函数功能:什么功能作用

函数案例:比如可以抓取物品如零食

用户需求:可以解决什么用户需求

用户案例:可以解决用户的。。。需求

用户提问方式:是什么,为什么,怎么办。。。

一般性抽象性概括性词汇,水果>香蕉

2.自定义本地语言模型的代码chatglm6B

参考了一些官方和他人帖子:

https://zhuanlan.zhihu.com/p/630147161

https://python.langchain.com/docs/modules/model_io/chat/custom_chat_model

https://python.langchain.com/docs/modules/model_io/llms/custom_llm

主要就是LLM类的继承和重写

# 函数继承和重写
class GLM(LLM):max_token: int = 2048temperature: float = 0.8top_p = 0.9tokenizer: object = Nonemodel: object = Nonehistory_len: int = 1024def __init__(self):super().__init__()@propertydef _llm_type(self) -> str:return "GLM"def load_model(self):self.tokenizer = AutoTokenizer.from_pretrained("PiaoYang/chatglm-6b", trust_remote_code=True)model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, device_map='auto')self.model = PeftModel.from_pretrained(model, "shibing624/chatglm-6b-belle-zh-lora")self.model = self.model.half().cuda()def _call(self, prompt:str,history:List[str] = [],stop: Optional[List[str]] = None):response = self.model.chat(self.tokenizer, prompt, max_length=128, eos_token_id=self.tokenizer.eos_token_id)return response

我们这里的本地模型是chatglm6B,结果:

显存:

速度:

10个字需要0.12s

3.调用国内大语言模型

因为agent的结果严重依赖llm的性能,chatglm6B虽然确实可以加快速度,但效果很差,基本没法正常调用tools,因此尝试调用清华做的质谱AI大模型chatglm4.

ZHIPU AI | 🦜️🔗 Langchain


 

质谱的key:智谱AI开放平台 (bigmodel.cn) 可免费申请。

效果依旧不好,速度也不快

4.其他加速方法

再说吧。

https://blog.csdn.net/inteldevzone/article/details/134645500zhizhi

这篇关于langchain调用语言模型chatglm4从智谱AI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851760

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

一分钟带你上手Python调用DeepSeek的API

《一分钟带你上手Python调用DeepSeek的API》最近DeepSeek非常火,作为一枚对前言技术非常关注的程序员来说,自然都想对接DeepSeek的API来体验一把,下面小编就来为大家介绍一下... 目录前言免费体验API-Key申请首次调用API基本概念最小单元推理模型智能体自定义界面总结前言最

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav