langchain调用语言模型chatglm4从智谱AI

2024-03-27 10:12

本文主要是介绍langchain调用语言模型chatglm4从智谱AI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

​0.langchain agent 原理

ReAct

1.langchain agent使用chatgpt调用tools的源代码

2.自定义本地语言模型的代码

3.其他加速方法


背景:如果使用openai的chatgpt4进行语言问答,是需要从国内到国外的一个客户请求-->openai服务器response的一个过程,尽管openai的算力很强,计算速度很快,但这个国内外网络的信息传输存在一定的延迟和不稳定现象。

可能的解决办法:调用本地语言模型,这样就不需要去访问openai的服务器了,也就没了网络传输。

0.langchain agent 原理

本质:llm推理-->推理结果和tools的描述计算相似度-->top 1 tool-->行动

在 LangChain 中,Agent 是一个代理,接收用户的输入,采取相应的行动然后返回行动的结果。

官方也提供了对应的 Agent,包括 OpenAI Functions Agent、Plan-and-execute Agent、Self Ask With Search 类 AutoGPT 的 Agent 等。

ReAct

基于 ReAct 原理来实现的 Agent。

https://react-lm.github.io/

https://github.com/ysymyth/ReAct

1.langchain agent使用chatgpt调用tools的源代码

主要关注agent是如何调用tools的

主要的执行类:agentExecutor

本质是agent就是一个特殊的chain

执行chain

在agentexcutor这个类里面,因为agent执行的是思考(llm)-->行为(tools)-->再根据结果再思考-->再行为这样的一个循环过程。即llm大脑思考用户的问题,然后计划方案,然后执行行为,根据行为结果思考是否解决问题,如果没有则继续思考然后继续执行行为,这样的逻辑过程。

使用llm来思考决定使用什么工具

又到了这里,因为llm也是chain,langchain的核心就是所有的都是chain,然后组合起来

终于看到了client的request了,这就是我们发送请求给openai

send:发送请求最后结果如下:

agent调用工具

本质是llm会根据用户的输入和tools的函数的功能描述来选择工具。逻辑是先把描述的语句和用户输入做embedding为token,然后做attention(余弦相似度计算),然后把相似度分数排序,选择相似度最高的。我们这里的用户输入是:告诉我长城在哪,和meta_case2的描述最接近(因为里面有"地点在哪"这个词),所以选择了这个工具。但并不符合我们的意图,所以llm并不能理解意图,只能做相似度计算,所以tools的函数功能描述非常重要。

关于我们函数功能描述的模板:

函数功能:什么功能作用

函数案例:比如可以抓取物品如零食

用户需求:可以解决什么用户需求

用户案例:可以解决用户的。。。需求

用户提问方式:是什么,为什么,怎么办。。。

一般性抽象性概括性词汇,水果>香蕉

2.自定义本地语言模型的代码chatglm6B

参考了一些官方和他人帖子:

https://zhuanlan.zhihu.com/p/630147161

https://python.langchain.com/docs/modules/model_io/chat/custom_chat_model

https://python.langchain.com/docs/modules/model_io/llms/custom_llm

主要就是LLM类的继承和重写

# 函数继承和重写
class GLM(LLM):max_token: int = 2048temperature: float = 0.8top_p = 0.9tokenizer: object = Nonemodel: object = Nonehistory_len: int = 1024def __init__(self):super().__init__()@propertydef _llm_type(self) -> str:return "GLM"def load_model(self):self.tokenizer = AutoTokenizer.from_pretrained("PiaoYang/chatglm-6b", trust_remote_code=True)model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, device_map='auto')self.model = PeftModel.from_pretrained(model, "shibing624/chatglm-6b-belle-zh-lora")self.model = self.model.half().cuda()def _call(self, prompt:str,history:List[str] = [],stop: Optional[List[str]] = None):response = self.model.chat(self.tokenizer, prompt, max_length=128, eos_token_id=self.tokenizer.eos_token_id)return response

我们这里的本地模型是chatglm6B,结果:

显存:

速度:

10个字需要0.12s

3.调用国内大语言模型

因为agent的结果严重依赖llm的性能,chatglm6B虽然确实可以加快速度,但效果很差,基本没法正常调用tools,因此尝试调用清华做的质谱AI大模型chatglm4.

ZHIPU AI | 🦜️🔗 Langchain


 

质谱的key:智谱AI开放平台 (bigmodel.cn) 可免费申请。

效果依旧不好,速度也不快

4.其他加速方法

再说吧。

https://blog.csdn.net/inteldevzone/article/details/134645500zhizhi

这篇关于langchain调用语言模型chatglm4从智谱AI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851760

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

Vue 调用摄像头扫描条码功能实现代码

《Vue调用摄像头扫描条码功能实现代码》本文介绍了如何使用Vue.js和jsQR库来实现调用摄像头并扫描条码的功能,通过安装依赖、获取摄像头视频流、解析条码等步骤,实现了从开始扫描到停止扫描的完整流... 目录实现步骤:代码实现1. 安装依赖2. vue 页面代码功能说明注意事项以下是一个基于 Vue.js

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的