如何快速下载GEO数据并获取其表达矩阵与临床信息 | 附完整代码 + 注释

本文主要是介绍如何快速下载GEO数据并获取其表达矩阵与临床信息 | 附完整代码 + 注释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GEO数据库可以说是大家使用频率贼高的数据库啦!那它里面的数据怎么下载大家知道嘛!今天给大家展示一种快速获取它的表达矩阵和临床信息的方法!

话不多说!咱们直接开始!

GEO编号获取

在GEO数据库中,你找到了你需要的数据,接下来怎么办嘞!下载它!处理它!

比如,咱们今天需要的数据是这个:

GEO编号这不就有咯!咱们开始下载!噢对,提前吱一声,芯片数据和非芯片数据进行ID转换的时候方法不太一样,大家要注意噢!我今天会都给大家演示一下!

GEO数据库今天咱就不介绍了哈!我后面再专门出一期超级详细地介绍它!迫切的小伙伴可以在后台或群里催我哈哈哈哈哈哈哈哈!

另外注意:不是所有的GEO数据集都可以使用这种方法下载。不过通常来说,大部分的GEO数据集都可以通过getGEO函数进行下载,但也有一些例外情况,特别是单细胞数据[无奈脸]!多数情况下,应该是数据集可能不是以类似的格式存储,或者有的作者上传格式不对等等,所以就需要找其他办法或者手动下载啦!

建议就是先试试这种方法,要是里面是空的,就去手动或者其他!

数据下载

芯片数据

#################### GEO数据下载及表达矩阵与临床信息获取 ######################## 加载包,没有安装的记得安装一下哟!
library(tidyverse)
library(GEOquery)
library(tinyarray)# 芯片数据# GEO编号,替换成你自己的就好啦!
geo_number = "GSE66360"# 这一步啊,看运气!网络时好时坏,是个玄学!一次不行不要慌!咱多跑几次!总会成功的!
geo_data <- getGEO(geo_number, destdir = './', getGPL = F) # 自己设置想保存的路径
geo_data0 <- geo_data[[1]]

数据长这样!

# 提取表达矩阵
exp <- exprs(geo_data0)
dim(exp)
# [1] 54675    99exp[1:4, 1:4]
#           GSM1620819 GSM1620820 GSM1620821 GSM1620822
# 1007_s_at   5.866378   4.948736   5.148384   5.064419
# 1053_at     8.225790   7.525865   7.764637   7.198461
# 117_at      6.179732   6.628137   5.859151   5.974135
# 121_at      6.179478   6.582889   6.602135   6.545905# 可以看到这里还是探针ID,咱们后给它面转换为基因symbol!# 可以自行判断是否需要log
exp <- log2(exp + 0.01)# 接下来我们进行ID转换# 探针注释获取
gpl_number <- geo_data0@annotation
ids <- AnnoProbe::idmap(gpl_number)
head(ids)
#         probe_id symbol
# 193731   1053_at   RFC2
# 193732    117_at  HSPA6
# 193733    121_at   PAX8
# 193734 1255_g_at GUCA1A
# 193735   1316_at   THRA
# 193736   1320_at PTPN21# ID转换
exp <- as.data.frame(exp)
exp$probe_id <- rownames(exp)
exp <- inner_join(ids, exp, by = "probe_id")
exp <- exp[!duplicated(exp$symbol), ] # 关于重复基因去重的问题,咱们后面专门出一期介绍!这里先用最大道至简的方法!
rownames(exp) <- exp$symbol
exp <- exp[ , -c(1,2)]
head(exp)[1:4, 1:4]
#        GSM1620819 GSM1620820 GSM1620821 GSM1620822
# RFC2     3.041907   2.913773   2.958775   2.849691
# HSPA6    2.629877   2.730778   2.553152   2.581143
# PAX8     2.629818   2.720911   2.725116   2.712795
# GUCA1A   1.486482   1.436010   1.373053   1.444733# 提取临床信息
cli <- pData(geo_data0)
head(cli)[1:4, 1:6]
#                               title geo_accession                status submission_date last_update_date type
# GSM1620819 Muse_1_DISCOVERY_Control    GSM1620819 Public on Feb 28 2015     Feb 27 2015      Feb 28 2015  RNA
# GSM1620820 Muse_2_DISCOVERY_Control    GSM1620820 Public on Feb 28 2015     Feb 27 2015      Feb 28 2015  RNA
# GSM1620821 Muse_3_DISCOVERY_Control    GSM1620821 Public on Feb 28 2015     Feb 27 2015      Feb 28 2015  RNA
# GSM1620822 Muse_4_DISCOVERY_Control    GSM1620822 Public on Feb 28 2015     Feb 27 2015      Feb 28 2015  RNA# 为了后续分析,咱还可以给它进一步调整,使表达矩阵列名和临床信息的行名完全一致
p <- identical(rownames(cli), colnames(exp))
p
# [1] TRUE# 噢啦!# 噢不!还没结束!那万一不是芯片数据怎么办呢!咱们再演示一个!

非芯片数据

# 非芯片数据# 比如这个GEO数据集
geo_number = "GSE16561"# 这一步啊,看运气!网络时好时坏,是个玄学!一次不行不要慌!咱多跑几次!总会成功的!
geo_data <- getGEO(geo_number, destdir = './', getGPL = F)
geo_data0 <- geo_data[[1]]# 提取表达矩阵
exp <- exprs(geo_data0)
dim(exp)
# [1] 54675    99exp[1:4, 1:4]
#                GSM416528  GSM416529  GSM416530   GSM416531
# ILMN_1343291  0.22550488  0.7348099  0.7431908  0.63261986
# ILMN_1651209 -0.03326082  0.5184302  0.5990343  0.25144434
# ILMN_1651228 -0.20895290 -0.9036322 -0.3511963 -0.06179523
# ILMN_1651229  0.18835354  0.3693209  0.3938241  0.14767408# # 可以自行判断是否需要log
# exp <- log2(exp + 1)# 大家可以看到这玩意儿不是探针,那咱们怎么办呢!

接下来我们进行非芯片数据的ID转换!

在你的GEO数据集的主页,可以看见下面这个红框框的地方!这里代表测序平台(咱们后面会在超详细介绍GEO数据库的时候给大家进行介绍这部分内容),直接点进去就好!

长这样!别急!往下滑滑!

哎对!就是这里!点红框框的地方!下载下来!

来!咱们继续看看怎么搞!

# 文件下载地址:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6883
ids <- data.table::fread("./GPL6883-11606.txt")# ID转换
exp <- as.data.frame(exp)
exp$ID <- rownames(exp)
ids <- ids[ , c(1,12)] # 注意:这里选择的是与表达矩阵行名相匹配的列和基因symbol列
exp <- inner_join(ids, exp, by = "ID")
exp <- exp[!duplicated(exp$Symbol), ]
exp <- as.data.frame(exp)
rownames(exp) <- exp$Symbol
exp <- exp[ , -c(1,2)]
head(exp)[1:4 ,1:4]
#              GSM416528  GSM416529   GSM416530  GSM416531
# JMJD1A    -0.401840200 -0.2110777 -0.42790460 -0.4261866
# NCOA3      0.296299930 -0.3155098 -0.01228809  0.5331011
# LOC389834 -0.001213074  0.5300436  0.55930424  0.2009177
# SPIRE2     0.127047540  0.5759945  0.45181800  0.4050984# 噢啦!# 老步骤!# 提取临床信息
cli <- pData(geo_data0)
head(cli)[1:4, 1:6]
#                    title geo_accession                status submission_date last_update_date type
# GSM416528 3100083_Stroke     GSM416528 Public on Jun 01 2010     Jun 11 2009      Jun 11 2009  RNA
# GSM416529 3100191_Stroke     GSM416529 Public on Jun 01 2010     Jun 11 2009      Jun 11 2009  RNA
# GSM416530 3100068_Stroke     GSM416530 Public on Jun 01 2010     Jun 11 2009      Jun 11 2009  RNA
# GSM416531 3100060_Stroke     GSM416531 Public on Jun 01 2010     Jun 11 2009      Jun 11 2009  RNA# 为了后续分析,咱还可以给它进一步调整,使表达矩阵列名和临床信息的行名完全一致
p <- identical(rownames(cli), colnames(exp))
p
# [1] TRUE

这回是真的噢啦!

一般使用GEO数据库很可能是多个数据集合并使用,那这个时候,由于数据来源不一样,肯定会有批次效应存在,那大家一定要记得进行批次处理噢!有兴趣的小伙伴们可以查看:数据挖掘 | 批次效应的鉴定与处理 | 附完整代码 + 注释 | 看完不会来揍我

在获取表达矩阵和临床信息后,我们还可以进行生存分析:看完不会来揍我 | 生存分析详解 | 从基础概念到生存曲线绘制 | 代码注释 + 结果解读

还有差异分析:看完还不会来揍/找我 | 差异分析三巨头 —— DESeq2、edgeR 和 limma 包 | 附完整代码 + 注释

还有富集分析:看完还不会来揍我 | GSEA富集分析详解(一)—— 代码实操 | MSigDB数据库介绍 | 附完整代码 + 注释

哎呀,还有好多好多!大家需要什么,都可以随时搜索!像这样:

暂时还没有的,也可以催更我!!!

文末碎碎念

那今天的分享就到这里啦!我们下期再见哟!

最后顺便给自己推荐一下嘿嘿嘿!

如果我的分享对你有用的话,欢迎关注点赞在看转发分享阿巴阿巴阿巴阿巴巴巴!这可是我的第一原动力!

蟹蟹你们的喜欢和支持!!!

如果小伙伴们有需求的话,可以加入我们的交流群:一定要知道 | 永久免费的生信交流群终于来啦!!在这里,你可以稍有克制地畅所欲言!

超级建议大家在入群前或入群后可以看一下这个:干货满满 | 给生信小白的入门小建议 | 掏心掏肺版!绝对干货满满!让你不虚此看!

如果有需要个性化定制分析服务的小伙伴,可以看看这里:你要的个性化生信分析服务今天正式开启啦!定制你的专属解决方案!全程1v1答疑!!绝对包你满意!

入群链接后续可能会不定期更新,主要是因为群满换码或是其他原因,如果小伙伴点开它之后发现,咦,怎么失效啦!不要慌!咱们辛苦一下动动小手去主页的要咨询那里,点击进交流群即可入群!

这篇关于如何快速下载GEO数据并获取其表达矩阵与临床信息 | 附完整代码 + 注释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851042

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da