(原创)拨开迷雾见月明-剖析asio中的proactor模式(二)

2024-03-26 10:50

本文主要是介绍(原创)拨开迷雾见月明-剖析asio中的proactor模式(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在上一篇博文中我们提到异步请求是从上层开始,一层一层转发到最下面的服务层的对象win_iocp_socket_service,由它将请求转发到操作系统(调用windows api),操作系统处理完异步请求之后又是如何返回给应用程序的呢,这里是通过iocp(完成端口)来实现的。让我们先来简要的看看iocp的基本步骤:

  1. 创建IOCP对象;
  2. 创建io object对象;
  3. 将io object IOCP对象绑定;
    4.进行异步调用;
  4. 创建线程或者由线程池等待完成事件的到来;

  asio实际上也是按照这个步骤去做的,再回头看看上一节中的那个简单的例子:

asio::io_service io_service; 
tcp::socket socket(io_service); 
boost::asio::async_connect(socket, server_address, connect_handler); 
io_service.run(); 

  第一行中的io_service对象是asio的核心,它其实封装了iocp,创建一个io_service实际上就是创建了一个iocp对象win_iocp_io_service,因此后面所有的io object的创建都要引用这个io_service,目的是共用这个iocp对象。第二行创建了socket对象,它引用了第一行创建的iocp对象;第三行实际上是将异步请求层层转发到最下面的服务层win_iocp_socket_service对象,最终交给操作系统。通过它的名字就知道它与iocp相关,因为发起异步操作之前,它先要将io object对象与完成端口绑定,以便后面的完成事件会发到指定的完成端口。

  绑定io object和iocp对象的具体过程是这样的:async_connect内部会先调用base_xxx模板层的base_socket<tcp>的open方法,base_socket<tcp>又会调用服务层的服务对象stream_socket_service<tcp>的open方法,stream_socket_service<tcp>又调用最下面的服务对象win_iocp_socket_service的open方法,win_iocp_socket_service对象又委托io object对象引用的io_service对象(实际上是win_iocp_io_service)的do_open方法,在do_open方法中会调用register_handler方法,在该方法中会调用CreateIoCompletionPort将io object和iocp对象绑定起来。

  io object和iocp对象绑定之后,win_iocp_socket_service会调用操作系统的api,发起异步操作。

  再看第四行:io_service.run();

  io_service::run()又是委托win_iocp_io_service::run()来实现的,让我们来看看run的内部实现:

size_t win_iocp_io_service::run(boost::system::error_code& ec)
{if (::InterlockedExchangeAdd(&outstanding_work_, 0) == 0){stop();ec = boost::system::error_code();return 0;}win_iocp_thread_info this_thread;thread_call_stack::context ctx(this, this_thread);size_t n = 0;while (do_one(true, ec))if (n != (std::numeric_limits<size_t>::max)())++n;return n;
}

  run()首先检查是否有需要处理的操作,如果没有,函数退出;win_iocp_io_service使用outstanding_work_来记录当前需要处理的任务数。如果该数值不为0,则委托do_one函数继续处理。do_one()内部会调用GetQueuedCompletionStatus()函数,该函数会阻塞等待异步事件的完成,当异步事件完成时,就回调到应用层的完成事件处理函数,因为发起异步操作时已经将io object和完成端口绑定了,所以iocp能将异步完成事件回调到对应的应用层的完成处理函数中。

  至此,asio中一个异步操作的过程就完成了。在了解了这些内部实现细节之后,我们再来看看boost官网上给出的一个asio中proactor模式的一张图。

  这张图和上一篇博文中Proactor模式的图几乎是一样的,我们根据这张图再结合前面的分析,就能从细节中还原出asio中的Proactor模式了。下面我们来看看上图中的这些对象分别是asio中的哪些对象:

  • Initiator:对应用户调用asio的代码;
  • Asynchronous Operation Processor:异步操作处理器,他负责执行异步操作,并在操作完成后,把完成事件投放到完成事件队列上。stream_socket_service类就是一个这样的处理器,因为从tcp::socket发送的异步操作都是由其完成处理的,它最终是由底层的服务对象win_iocp_socket_service完成的,win_iocp_socket_service负责绑定io object和io_service对象和调用操作系统api发起异步操作。从高层的角度看,asio的stream_socket_service成为了Proactor中的异步操作处理器。
  • Asynchronous Operation:定义的一系列异步操作,对应到Windows平台,诸如AcceptEx,WSASend,WSARecv等函数。在asio中,这些函数封装在win_iocp_socket_service,resolver_service类中。[1]
  • Completion Handler:用户层完成事件处理器,由用户创建,一般是通过bind或者lambda表达式定义。
  • Completion Event Queue:完成事件队列,存储由异步操作处理器发送过来的完成事件,当异步事件多路分离器将其中一个事件取走之后,该事件从队列中删除;在Windows上,asio的完成事件队列由操作系统负责管理;
  • Asynchronous Event Demultiplexer:异步事件多路分离器,他的作用就是在完成事件队列上等待,一旦有事件到来,他就把该事件返回给调用者。在Windows上,这一功能也是由操作系统完成的,具体来说,是由GetQueuedCompletionStatus完成的,而该函数是由do_one()调用的,因此,从高层的角度来看,这个分离器,也是由io_service负责的。[2]
  • Proactor,前摄器,负责调度异步事件多路分离器去干活,并在异步操作完成时,调度所对应的Completion Handler。在asio中,这部分由io_service来做,具体Windows就是win_iocp_io_service。[3]

  从上面的分析可以看到,asoi中的Proactor模式已经很清晰了,io_service在asio中处于核心地位,不仅仅是对应了一个完成端口对象,还参与了Proactor模式中的异步事件处理和启动事件循环,调度异步事件多路分离器将异步事件回调到应用层。

  再来做一个小结:io object负责发起异步操作,发起异步操作的过程中,会委托stream_socket_service将异步操作转发到下面的服务层,最终转发到操作系统。io object创建时需要引用io_service,以便在后面绑定完成端口,同时还要提供完成事件处理函数,以便在异步操作完成后处理完成事件。io_service负责启动事件循环,等待异步事件的完成并将异步操作的结果回发到用户定义的完成事件处理函数中。


[1] [2] [3] http://blog.csdn.net/henan_lujun/article/details/8965044

如果你觉得这篇文章对你有用,可以点一下推荐,谢谢。

c++11 boost技术交流群:296561497,欢迎大家来交流技术。

这篇关于(原创)拨开迷雾见月明-剖析asio中的proactor模式(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/848259

相关文章

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

C++中的解释器模式实例详解

《C++中的解释器模式实例详解》这篇文章总结了C++标准库中的算法分类,还介绍了sort和stable_sort的区别,以及remove和erase的结合使用,结合实例代码给大家介绍的非常详细,感兴趣... 目录1、非修改序列算法1.1 find 和 find_if1.2 count 和 count_if1

Redis中群集三种模式的实现

《Redis中群集三种模式的实现》Redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1. Redis三种模式概述2、Redis 主从复制2.1 主从复制的作用2.2 主从复制流程2

深入理解MySQL流模式

《深入理解MySQL流模式》MySQL的Binlog流模式是一种实时读取二进制日志的技术,允许下游系统几乎无延迟地获取数据库变更事件,适用于需要极低延迟复制的场景,感兴趣的可以了解一下... 目录核心概念一句话总结1. 背景知识:什么是 Binlog?2. 传统方式 vs. 流模式传统文件方式 (非流式)流

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R