【数学基础篇】---详解极限与微分学与Jensen 不等式

2024-03-25 16:18

本文主要是介绍【数学基础篇】---详解极限与微分学与Jensen 不等式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前述

数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识。

二、极限

1.例子
当x趋于0的时候,sin(x)与tan(x)都趋于0。但是哪一个趋于0的速度更快一些呢?
我们考察这两个函数的商的极限,
在这里插入图片描述
所以当 x → 0 的时候,sin(x) 与 tan(x) 是同样级别的无穷小。
2.相关定理
如果三个函数满足 f(x) ≤ g(x) ≤ h(x), 而且他们都在 x0 处有极限,那么
在这里插入图片描述
重要极限:
在这里插入图片描述

三、微分学

微分学的核心思想:逼近。
1.函数导数:
如果一个函数 f(x) 在 x0 附近有定义,而且存在极限。
在这里插入图片描述
那么 f(x) 在 x0 处可导且导数 f ′ (x0) = L。
无穷小量表述:线性逼近。
在这里插入图片描述
Definition(函数的高阶导数)
如果函数的导数函数仍然可导,那么导数函数的导数是二阶导数,二阶导数函数的导数是三阶导数。
一般地记为
在这里插入图片描述
或者进一步
在这里插入图片描述
导数是对函数进行线性逼近,高阶导数是对导数函数的进一步逼近,因为没有更好的办法,所以数学家选择继续使用线性逼近。
Example (初等函数的导数)
在这里插入图片描述
2.微分学:多元函数
在这里插入图片描述
且 Lx,Ly 分别是 f 在 x, y 方向上的偏导数。一般记为
在这里插入图片描述
3.Definition (高阶偏导数)
在这里插入图片描述
并且二阶偏导数为
在这里插入图片描述
4.Example (偏导数的例子)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5.求导法则
在这里插入图片描述
6.总结
微分学的核心思想是逼近。
一阶导数:线性逼近
二阶导数:二次逼近
导数计算:求导法则

四、泰勒级数

1.泰勒/迈克劳林级数: 多项式逼近。
在这里插入图片描述
2.泰勒级数: 例子
在这里插入图片描述
3.应用
泰勒级数是一元微分逼近的顶峰,所以有关于一元微分逼近的问题请尽情使用。
罗比塔法则
在这里插入图片描述
证明:
因为是在 x0 附近的极限问题,我们使用泰勒级数来思考这个问题
在这里插入图片描述
在这里插入图片描述
4.小结 (泰勒级数)
泰勒级数本质是多项式逼近
特殊函数的泰勒级数可以适当记一下
泰勒级数可以应用于很多与逼近相关的问题。

五、牛顿法与梯度下降法

很多机器学习或者统计的算法最后都转化成一个优化的问题。也就是求某一个损失函数的极小值的问题,在本课范围内我们考虑可微分的函数极小值问题。
1.优化问题
对于一个无穷可微的函数f(x),如何寻找他的极小值点。
极值点条件。
全局极小值:如果对于任何 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是全局极小值点。
局部极小值:如果存在一个正数 δ 使得,对于任何满足 |x˜ − x∗| < δ 的 x˜, 都有 f(x∗) ≤ f(˜x),那么 x∗ 就是局部极 小值点。(方圆 δ 内的极小值点)
不论是全局极小值还是局部极小值一定满足一阶导数/梯度 为零,f ′ = 0 或者 ∇f = 0。
2.局部极值算法
这两种方法都只能寻找局部极值这两种方法都要求必须给出一个初始点 x0
数学原理:牛顿法使用二阶逼近(等价于使用二阶泰勒级数),梯度下降法使用一阶逼近
牛顿法对局部凸的函数找到极小值,对局部凹的函数找到极大值,对局部不凸不凹的可能会找到鞍点。
梯度下降法一般不会找到最大值,但是同样可能会找到鞍点。
当初始值选取合理的情况下,牛顿法比梯度下降法收敛速度快。
牛顿法要求估计二阶导数,计算难度更大.
3.牛顿法
首先在初始点x0处,写出二阶泰勒级数。
在这里插入图片描述在这里插入图片描述多变量函数二阶逼近
在这里插入图片描述
在这里插入图片描述
4.梯度下降法:多变量函数一阶逼近
如果函数 f(x) 是个多元函数,x 是一个向量,在 x0 处对f做线性逼近。
在这里插入图片描述
5.小结 (牛顿法与梯度下降法)
牛顿法与梯度下降法本质上都是对目标函数进行局部逼近,因为是局部逼近所以也只能寻找局部极值。
牛顿法收敛步骤比较少,但是梯度下降法每一步计算更加简单,牛顿法不仅给出梯度的方向还给出具体应该走多少。梯度法的r只能自己定义。
不同的算法之间很难说哪一个更好,选择算法还要具体问题具体分析(这也是数据科学家存在的意义之一)。
梯度本身是向着最大方向的,加个负号才是向着最小方向的。

六、凸函数与琴生不等式

1.Definition (凸函数)
在这里插入图片描述
把如上定义中的 ≤ 换成<,那么这个函数就叫做严格凸函数。
2.(凸函数判断准则)
在这里插入图片描述
如果 f 是多元函数,x 是个向量,那么 f 是凸函数的条件变为Hf 是一个半正定矩阵。
3.凸函数重要性质: 琴生不等式
在这里插入图片描述

配合视频食用,风味更佳→《人工智能必备数学基础》

TESRA超算网络旗下T-CCP社区已上线,社区由高校AI社团及AI爱好者组成,社区包含学习视频、学习笔记、数据集模型、算法竞赛等内容,新用户注册还能免费领取算力训练,欢迎前来体验。立即边学边练>>>

在这里插入图片描述

这篇关于【数学基础篇】---详解极限与微分学与Jensen 不等式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/845547

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念