java 三元搜索 - 迭代与递归(Ternary Search)

2024-03-25 10:36

本文主要是介绍java 三元搜索 - 迭代与递归(Ternary Search),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        计算机系统使用不同的方法来查找特定数据。有多种搜索算法,每种算法更适合特定情况。例如,二分搜索将信息分为两部分,而三元搜索则执行相同的操作,但分为三个相等的部分。值得注意的是,三元搜索仅对排序数据有效。在本文中,我们将揭开三元搜索的秘密——它是如何工作的,为什么它在某些情况下更快。无论您是编码专家还是刚刚起步,都准备好快速进入三元搜索的世界!
什么是三元搜索?
        三元搜索是一种搜索算法,用于查找排序数组中目标值的位置。它的工作原理是将数组分为三部分,而不是像二分搜索那样分为两部分。基本思想是通过将目标值与将数组分为三个相等部分的两个点上的元素进行比较来缩小搜索空间。
        mid1 = l + (rl)/3 
        mid2 = r – (rl)/3 
三元搜索的工作原理:
        这个概念涉及将数组分成三个相等的段,并确定关键元素(正在寻找的元素)位于哪个段。它的工作原理与二分搜索类似,不同之处在于通过将数组分为三部分而不是两部分来降低时间复杂度。

以下是三元搜索工作的分步说明:
1、初始化:
        从排序数组开始。
        设置两个指针left和right,最初指向数组的第一个和最后一个元素。
2、划分数组:
        计算两个中点mid1和mid2,将当前搜索空间分为三个大致相等的部分:
                mid1 = 左 + (右 – 左) / 3
                mid2 = 右 – (右 – 左) / 3
        该数组现在有效地分为[left, mid1]、(mid1, mid2 ) 和[mid2, right]。
3、与目标比较: .
        如果target等于mid1或mid2处的元素,则查找成功,并返回索引
        如果目标小于mid1处的元素,则将右指针更新为mid1 – 1。
        如果目标大于mid2处的元素,则将左指针更新为mid2 + 1。
        如果目标位于mid1和mid2的元素之间,则将左指针更新为mid1 + 1,将右指针更新为mid2 – 1。
4、重复或结论:
        使用缩小的搜索空间重复该过程,直到找到目标或搜索空间变空。
        如果搜索空间为空并且未找到目标,则返回一个值,指示目标不存在于数组中。
插图: 

三元搜索的递归实现:

// Java program to illustrate
// recursive approach to ternary search
 
class GFG {
 
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int ar[])
    {
        if (r >= l) {
 
            // Find the mid1 and mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
 
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
 
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
 
            if (key < ar[mid1]) {
 
                // The key lies in between l and mid1
                return ternarySearch(l, mid1 - 1, key, ar);
            }
            else if (key > ar[mid2]) {
 
                // The key lies in between mid2 and r
                return ternarySearch(mid2 + 1, r, key, ar);
            }
            else {
 
                // The key lies in between mid1 and mid2
                return ternarySearch(mid1 + 1, mid2 - 1, key, ar);
            }
        }
 
        // Key not found
        return -1;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int l, r, p, key;
 
        // Get the array
        // Sort the array if not sorted
        int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
        // Starting index
        l = 0;
 
        // end element index
        r = 9;
 
        // Checking for 5
 
        // Key to be searched in the array
        key = 5;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        System.out.println("Index of " + key + " is " + p);
 
        // Checking for 50
 
        // Key to be searched in the array
        key = 50;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        System.out.println("Index of " + key + " is " + p);
    }

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n)
辅助空间: O(log 3 n)

三元搜索的迭代方法: 

// Java program to illustrate
// the iterative approach to ternary search
 
class GFG {
 
    // Function to perform Ternary Search
    static int ternarySearch(int l, int r, int key, int ar[])
 
    {
        while (r >= l) {
 
            // Find the mid1  mid2
            int mid1 = l + (r - l) / 3;
            int mid2 = r - (r - l) / 3;
 
            // Check if key is present at any mid
            if (ar[mid1] == key) {
                return mid1;
            }
            if (ar[mid2] == key) {
                return mid2;
            }
 
            // Since key is not present at mid,
            // check in which region it is present
            // then repeat the Search operation
            // in that region
 
            if (key < ar[mid1]) {
 
                // The key lies in between l and mid1
                r = mid1 - 1;
            }
            else if (key > ar[mid2]) {
 
                // The key lies in between mid2 and r
                l = mid2 + 1;
            }
            else {
 
                // The key lies in between mid1 and mid2
                l = mid1 + 1;
                r = mid2 - 1;
            }
        }
 
        // Key not found
        return -1;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int l, r, p, key;
 
        // Get the array
        // Sort the array if not sorted
        int ar[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
        // Starting index
        l = 0;
 
        // end element index
        r = 9;
 
        // Checking for 5
 
        // Key to be searched in the array
        key = 5;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        System.out.println("Index of " + key + " is " + p);
 
        // Checking for 50
 
        // Key to be searched in the array
        key = 50;
 
        // Search the key using ternarySearch
        p = ternarySearch(l, r, key, ar);
 
        // Print the result
        System.out.println("Index of " + key + " is " + p);
    }

输出
5 的指数为 4 
50 的指数为 -1

时间复杂度: O(2 * log 3 n),其中 n 是数组的大小。
辅助空间: O(1)

三元搜索的复杂度分析:
时间复杂度:
        最坏情况:O(log 3 N)
        平均情况: θ(log 3 N)
        最好的情况:Ω(1)
        辅助空间: O(1)

二元搜索与三元搜索:
        二分查找的时间复杂度低于三目查找,因为三目查找的比较次数比二分查找多得多。二分搜索用于查找单调函数的最大值/最小值,而三元搜索用于查找单峰函数的最大值/最小值。
        注意:我们也可以对单调函数使用三元搜索,但时间复杂度会比二分搜索稍高。
优点:
        三元搜索可以找到单峰函数的最大值/最小值,而二元搜索不适用。
        三元搜索的时间复杂度为O(2 * log 3 n),比线性搜索更高效,与二分搜索相当。
        非常适合优化问题。
缺点:
        三元搜索仅适用于有序列表或数组,不能用于无序或非线性数据集。
        与二元搜索相比,三元搜索需要更多时间来查找单调函数的最大值/最小值。

何时使用三元搜索:
        当您有一个大型有序数组或列表并且需要查找特定值的位置时。
        当您需要找到函数的最大值或最小值时。
        当您需要在双调序列中找到双调点时。
        当您必须计算二次表达式时
概括:
        三元搜索是一种分治算法,用于查找给定数组或列表中特定值的位置。
        它的工作原理是将数组分为三部分,并对适当的部分递归地执行搜索操作,直到找到所需的元素。 
        该算法的时间复杂度为 O(2 * log 3 n),比线性搜索更有效,但比二分搜索等其他搜索算法不太常用。 
        需要注意的是,要使三元搜索正常工作,要搜索的数组必须进行排序。 

这篇关于java 三元搜索 - 迭代与递归(Ternary Search)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844719

相关文章

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

Spring Boot整合消息队列RabbitMQ的实现示例

《SpringBoot整合消息队列RabbitMQ的实现示例》本文主要介绍了SpringBoot整合消息队列RabbitMQ的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录RabbitMQ 简介与安装1. RabbitMQ 简介2. RabbitMQ 安装Spring

springMVC返回Http响应的实现

《springMVC返回Http响应的实现》本文主要介绍了在SpringBoot中使用@Controller、@ResponseBody和@RestController注解进行HTTP响应返回的方法,... 目录一、返回页面二、@Controller和@ResponseBody与RestController

JAVA集成本地部署的DeepSeek的图文教程

《JAVA集成本地部署的DeepSeek的图文教程》本文主要介绍了JAVA集成本地部署的DeepSeek的图文教程,包含配置环境变量及下载DeepSeek-R1模型并启动,具有一定的参考价值,感兴趣的... 目录一、下载部署DeepSeek1.下载ollama2.下载DeepSeek-R1模型并启动 二、J

springboot rocketmq配置生产者和消息者的步骤

《springbootrocketmq配置生产者和消息者的步骤》本文介绍了如何在SpringBoot中集成RocketMQ,包括添加依赖、配置application.yml、创建生产者和消费者,并展... 目录1. 添加依赖2. 配置application.yml3. 创建生产者4. 创建消费者5. 使用在

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线