Matlab|【免费】智能配电网的双时间尺度随机优化调度

2024-03-25 02:12

本文主要是介绍Matlab|【免费】智能配电网的双时间尺度随机优化调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

基础模型

2 部分代码

3 部分程序结果

4 下载链接


主要内容

该程序为文章《Two-Timescale Stochastic Dispatch of Smart Distribution Grids》的源代码,主要做的是主动配电网的双时间尺度随机优化调度,该模型考虑配电网的高效和安全运行涉及到在不同的时间尺度上的决策,如电压控制器可以在慢时间尺度进行调度,而光伏需要在快时间尺度调度和调节,以最佳地跟踪可再生能源发电和需求的变化,两种时间尺度通过耦合方式形成统一的优化调度模型。文中对于随机优化模型建立了两种方式,分别是平均调度算法和概率调度算法,这两种方法均基于辐射网络线性分布潮流(LDF)模型,模型涉及拉格朗日、非凸转换等深度内容,非常适合用来学习。程序采用matlab+cvx进行求解,程序采用模块化方式、采用英文注释,适合有编程经验的同学深度学习!

  • 基础模型

该模型通过引入A建立配网潮流模型,通过电流流向(始端和终端)建立线路和节点关联关系。

以此为基础通过进一步推导和变量集合,形成优化调度模型。

将上述模型中的(9l)替换为下述概率模型即可形成概率调度算法。

模型中目标函数涉及到在慢时间尺度上的能量调度成本加上快速时间尺度上的平均能源管理成本,(9b)-(9c)确保节点(无功)有功功率平衡,(9e)考虑有功功率损失,(9f)是线性潮流容量约束,(9i)-(9l)是电压约束,其中(9l)为平均电压约束,替换成(10)即形成概率电压约束。

部分代码

clear; close all
%%
preprocess;
​
%buses_pm = [3 5 14 25 32 51];
buses_pm = [];
b_pm = false(1, Nb);
b_pm(buses_pm) = 1;
buses_pd = [10, 18, 21, 30, 36, 43, 51, 55];
b_pd = false(1, Nb);
b_pd(buses_pd) = 1;
​
params = struct();
params.pm_lower = zeros(Nb, 1);
params.pm_upper = zeros(Nb, 1);
params.pm_upper(b_pm) = 0.25;
%http://www.powermag.com/microturbine-technology-matures/
microturbine_pf = 0.8;
params.pm_diag_phi = diag(b_pm)*tan(acos(microturbine_pf));
params.pm_linear = 40*ones(Nb,1);    % reasonable value 
params.pm_quadratic = 20*ones(Nb,1); % to give some curvature
% pm_space = linspace(0, 0.2, 100);
% plot(pm_space, mean(params.pm_linear)    * pm_space + ...
%                mean(params.pm_quadratic) * pm_space.^2);
params.pd_lower  = zeros(Nb, 1);
params.pd_upper  = zeros(Nb, 1);
params.pd_upper(b_pd) = 0.5;
params.pd_linear = 30*ones(Nb, 1); %must be higher than solar% should be lower than the microturbines linear term
params.pd_quadratic = 15*ones(Nb, 1);
if(0),pd_space = linspace(0, 0.5, 100);plot(pd_space, mean(params.pd_linear)    * pd_space + ...mean(params.pd_quadratic) * pd_space.^2);
end
params.S2 = 7.^2*ones(Nb,1); % indirectly effects a limit on the substation injection
params.pi_inverter = 0.0*ones(Nb,1);  % typical value (1/2 ret)
params.beta   = 37;
params.gammaB = 45;
params.gammaS = 19;
%buses_pv = [15 22 31 40 44 50];
%buses_pv = 44;
buses_pv = [44 50];
b_pv = zeros(Nb,1);
b_pv(buses_pv) = 1;
%nominal_pv = 2*b_pv; % smaller PV systems than in SCE model
nominal_pv = 5*b_pv; %SCE 56 nodes (Gan, Li, Topcu and Low)
params.s2_inverter = (1.2*nominal_pv).^2;
inverter_pf = 0.85; % Dall'Anese, Dhople, and Giannakis, 2014
params.phi_inverter = b_pv*tan(acos(inverter_pf));
​
params.alpha = 0.05;
​
%%
v_bounds_tight = struct();
v_bounds_tight.v_upper = 1.02.^2*ones(Nb, 1);
v_bounds_tight.v_lower = 0.98.^2*ones(Nb, 1);
​
v_bounds_loose = struct();
v_bounds_loose.v_upper = 1.03.^2*ones(Nb, 1);
v_bounds_loose.v_lower = 0.97.^2*ones(Nb, 1);
​
v0_bounds = struct();
v0_bounds.v_upper = 1.03.^2;
v0_bounds.v_lower = 0.97.^2;
​
%%
load_max_pf = 0.85; load_phi = tan(acos(load_max_pf));
tnomi_p_load = 1; %how many times the nominal load is the mean
stdev_p_load = 0.2; %standard deviation of the random var
stdev_q_load = load_phi*(tnomi_p_load/3 - stdev_p_load);
% This line adjusts the reactive load's stdev_q considering that 
% the "worst-case" power factor takes place when
% the active load is 3*stdev_p below the mean and reactive load
% is 3*stdev_q in absolute value.
prop_p_avail = 0.5; %proportion of the available p that is 
% randomized via a uniform distribution.
​
n_rlz = 500; % number of realizations of the random vars
hyp.seed = 20;
​
rng(hyp.seed);
random_vars = struct();
random_vars.p_load = ...tnomi_p_load*nominal_loads(2:end)*ones(1, n_rlz) ...+ stdev_p_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.q_load = ...stdev_q_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.pinv_available = ...diag(nominal_pv)*(1-prop_p_avail*rand(Nb, n_rlz));
​
random_vars_mean = struct();
random_vars_mean.p_load = tnomi_p_load*nominal_loads(2:end);
random_vars_mean.q_load = 0*nominal_loads(2:end);
random_vars_mean.pinv_available = (1-prop_p_avail/2)*nominal_pv;
​
first_stage_initial = solve_average (benchmark, params, ...random_vars_mean, v_bounds_tight);
​
%nu_initial = 0.2;
​
%%
hyp.n_iterations = n_rlz;
hyp.epsilon0_p0 = 4/50/5;
hyp.epsilon0_v0 = 0.02/50;
hyp.epsilon0_pd = 0.3/50;
hyp.mu0         = 1.5*50*3;
hyp.evaluate_output = 0;
%hyp.stepsize_mode = 'constant';
hyp.stepsize_mode = 'O(1/sqrt(k))';
hyp.precision = 'low';
hyp.r = 0.5;
nu_upper_initial = zeros(Nb, 1); nu_upper_initial(1) = 0;  %0.8;
nu_lower_initial = zeros(Nb, 1); nu_lower_initial(36) = 0; %0.6;
results = stochastic_solver_avg(benchmark, ...first_stage_initial, nu_lower_initial, nu_upper_initial, ...random_vars, params, ...v_bounds_tight, v_bounds_loose,  v0_bounds, hyp, ...struct('plot', 1));
​
%%
filename = ['run-' datestr(now)];
filename(16)='_';
filename(filename==':') = [];
save(filename)
display(['Saved ' filename]);
beep

部分程序结果

4 下载链接

这篇关于Matlab|【免费】智能配电网的双时间尺度随机优化调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843540

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、