Matlab|【免费】智能配电网的双时间尺度随机优化调度

2024-03-25 02:12

本文主要是介绍Matlab|【免费】智能配电网的双时间尺度随机优化调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

基础模型

2 部分代码

3 部分程序结果

4 下载链接


主要内容

该程序为文章《Two-Timescale Stochastic Dispatch of Smart Distribution Grids》的源代码,主要做的是主动配电网的双时间尺度随机优化调度,该模型考虑配电网的高效和安全运行涉及到在不同的时间尺度上的决策,如电压控制器可以在慢时间尺度进行调度,而光伏需要在快时间尺度调度和调节,以最佳地跟踪可再生能源发电和需求的变化,两种时间尺度通过耦合方式形成统一的优化调度模型。文中对于随机优化模型建立了两种方式,分别是平均调度算法和概率调度算法,这两种方法均基于辐射网络线性分布潮流(LDF)模型,模型涉及拉格朗日、非凸转换等深度内容,非常适合用来学习。程序采用matlab+cvx进行求解,程序采用模块化方式、采用英文注释,适合有编程经验的同学深度学习!

  • 基础模型

该模型通过引入A建立配网潮流模型,通过电流流向(始端和终端)建立线路和节点关联关系。

以此为基础通过进一步推导和变量集合,形成优化调度模型。

将上述模型中的(9l)替换为下述概率模型即可形成概率调度算法。

模型中目标函数涉及到在慢时间尺度上的能量调度成本加上快速时间尺度上的平均能源管理成本,(9b)-(9c)确保节点(无功)有功功率平衡,(9e)考虑有功功率损失,(9f)是线性潮流容量约束,(9i)-(9l)是电压约束,其中(9l)为平均电压约束,替换成(10)即形成概率电压约束。

部分代码

clear; close all
%%
preprocess;
​
%buses_pm = [3 5 14 25 32 51];
buses_pm = [];
b_pm = false(1, Nb);
b_pm(buses_pm) = 1;
buses_pd = [10, 18, 21, 30, 36, 43, 51, 55];
b_pd = false(1, Nb);
b_pd(buses_pd) = 1;
​
params = struct();
params.pm_lower = zeros(Nb, 1);
params.pm_upper = zeros(Nb, 1);
params.pm_upper(b_pm) = 0.25;
%http://www.powermag.com/microturbine-technology-matures/
microturbine_pf = 0.8;
params.pm_diag_phi = diag(b_pm)*tan(acos(microturbine_pf));
params.pm_linear = 40*ones(Nb,1);    % reasonable value 
params.pm_quadratic = 20*ones(Nb,1); % to give some curvature
% pm_space = linspace(0, 0.2, 100);
% plot(pm_space, mean(params.pm_linear)    * pm_space + ...
%                mean(params.pm_quadratic) * pm_space.^2);
params.pd_lower  = zeros(Nb, 1);
params.pd_upper  = zeros(Nb, 1);
params.pd_upper(b_pd) = 0.5;
params.pd_linear = 30*ones(Nb, 1); %must be higher than solar% should be lower than the microturbines linear term
params.pd_quadratic = 15*ones(Nb, 1);
if(0),pd_space = linspace(0, 0.5, 100);plot(pd_space, mean(params.pd_linear)    * pd_space + ...mean(params.pd_quadratic) * pd_space.^2);
end
params.S2 = 7.^2*ones(Nb,1); % indirectly effects a limit on the substation injection
params.pi_inverter = 0.0*ones(Nb,1);  % typical value (1/2 ret)
params.beta   = 37;
params.gammaB = 45;
params.gammaS = 19;
%buses_pv = [15 22 31 40 44 50];
%buses_pv = 44;
buses_pv = [44 50];
b_pv = zeros(Nb,1);
b_pv(buses_pv) = 1;
%nominal_pv = 2*b_pv; % smaller PV systems than in SCE model
nominal_pv = 5*b_pv; %SCE 56 nodes (Gan, Li, Topcu and Low)
params.s2_inverter = (1.2*nominal_pv).^2;
inverter_pf = 0.85; % Dall'Anese, Dhople, and Giannakis, 2014
params.phi_inverter = b_pv*tan(acos(inverter_pf));
​
params.alpha = 0.05;
​
%%
v_bounds_tight = struct();
v_bounds_tight.v_upper = 1.02.^2*ones(Nb, 1);
v_bounds_tight.v_lower = 0.98.^2*ones(Nb, 1);
​
v_bounds_loose = struct();
v_bounds_loose.v_upper = 1.03.^2*ones(Nb, 1);
v_bounds_loose.v_lower = 0.97.^2*ones(Nb, 1);
​
v0_bounds = struct();
v0_bounds.v_upper = 1.03.^2;
v0_bounds.v_lower = 0.97.^2;
​
%%
load_max_pf = 0.85; load_phi = tan(acos(load_max_pf));
tnomi_p_load = 1; %how many times the nominal load is the mean
stdev_p_load = 0.2; %standard deviation of the random var
stdev_q_load = load_phi*(tnomi_p_load/3 - stdev_p_load);
% This line adjusts the reactive load's stdev_q considering that 
% the "worst-case" power factor takes place when
% the active load is 3*stdev_p below the mean and reactive load
% is 3*stdev_q in absolute value.
prop_p_avail = 0.5; %proportion of the available p that is 
% randomized via a uniform distribution.
​
n_rlz = 500; % number of realizations of the random vars
hyp.seed = 20;
​
rng(hyp.seed);
random_vars = struct();
random_vars.p_load = ...tnomi_p_load*nominal_loads(2:end)*ones(1, n_rlz) ...+ stdev_p_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.q_load = ...stdev_q_load*diag(nominal_loads(2:end))*randn(Nb, n_rlz);
random_vars.pinv_available = ...diag(nominal_pv)*(1-prop_p_avail*rand(Nb, n_rlz));
​
random_vars_mean = struct();
random_vars_mean.p_load = tnomi_p_load*nominal_loads(2:end);
random_vars_mean.q_load = 0*nominal_loads(2:end);
random_vars_mean.pinv_available = (1-prop_p_avail/2)*nominal_pv;
​
first_stage_initial = solve_average (benchmark, params, ...random_vars_mean, v_bounds_tight);
​
%nu_initial = 0.2;
​
%%
hyp.n_iterations = n_rlz;
hyp.epsilon0_p0 = 4/50/5;
hyp.epsilon0_v0 = 0.02/50;
hyp.epsilon0_pd = 0.3/50;
hyp.mu0         = 1.5*50*3;
hyp.evaluate_output = 0;
%hyp.stepsize_mode = 'constant';
hyp.stepsize_mode = 'O(1/sqrt(k))';
hyp.precision = 'low';
hyp.r = 0.5;
nu_upper_initial = zeros(Nb, 1); nu_upper_initial(1) = 0;  %0.8;
nu_lower_initial = zeros(Nb, 1); nu_lower_initial(36) = 0; %0.6;
results = stochastic_solver_avg(benchmark, ...first_stage_initial, nu_lower_initial, nu_upper_initial, ...random_vars, params, ...v_bounds_tight, v_bounds_loose,  v0_bounds, hyp, ...struct('plot', 1));
​
%%
filename = ['run-' datestr(now)];
filename(16)='_';
filename(filename==':') = [];
save(filename)
display(['Saved ' filename]);
beep

部分程序结果

4 下载链接

这篇关于Matlab|【免费】智能配电网的双时间尺度随机优化调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843540

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件