python opencv入门 Hough直线变换(27)

2024-03-24 08:08

本文主要是介绍python opencv入门 Hough直线变换(27),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自OpenCV-Python Tutorials 自己翻译整理

目标:
理解概念
在图片中检测直线
学习函数cv2.HoughLines(),cv2.HoughLinesP()

原理:
霍夫变换在检测各种形状的技术中十分流行,如果能用数学表达式写出图形的公式,就可以使用霍夫变换来进行检测。

待检测的物体可以存在一些破坏和变型。

直线的表达式为 y=mx+c 或者用极坐标表示为, ρ=xcosθ+ysinθ

ρ表示从原点到直线的垂直距离,θ表示直线的垂线与横轴顺时针方向的夹角。
这里写图片描述

直线在原点下方,ρ是正值,角度小于180。直线在原点上方经过,角度不是大于180度,而是小于180度,但是ρ值取负值。垂直的时候角度为0,水平的时候角度为90度。

霍夫变换是如何实现的?
每条直线都可以用(ρ,θ)表示。
首先创建一个2D数组或者累加器(用来存储两个参数),初始化数组为0。行表示ρ,列表示θ。数组的大小决定了结果是否准确。如果要精度为1度,那么需要180列。
ρ值最大为图片对角线的距离。如果精度要求达到像素级别,那么行数应该等于图像对角线的长度。

如果有一个100×100的水平直线在图像中央(在第50行的位置)。取直线上第一个点(x,y),将点带入方程,遍历θ值从0到180.求出对应的ρ值,这样得到敌对(ρ,θ),如果该值再创建的2D数组(累加器)中的对应位置上也存在,那个该位置加1。所以累加器中位置(50,90)=1。(一个点可能在多条直线当中,所以一个点可能对应多个值加1)。取直线第二个点,重复上述过程。更新累加器中的值。此时(50,90)的值为2。对直线上每个点都按照这种方式操作,最后(50,90)的值肯定最大。这就说明有一条直线。

(注意上面能选取到直线上的点的原因是因为选取的图像边缘信息点)

opencv中的霍夫变换
使用函数cv2.HoughLines(),返回(ρ,θ),ρ的单位是像素,θ是弧度。
输入参数:第一个参数是二值化图像,进行霍夫变换之前要进行二值化或者canny边缘检测。第二第三个参数代表ρ和θ的精度。第四个参数是阈值,只有当累加器中的值高于阈值时才被当成是直线。

import cv2
import numpy as np
img = cv2.imread('18.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rhox1 = int(x0 + 1000*(-b))y1 = int(y0 + 1000*(a))x2 = int(x0 - 1000*(-b))y2 = int(y0 - 1000*(a))cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('houghlines3.jpg',img)

这里写图片描述

概率霍夫变换

上面的过程可以看到一条直线需要两个参数,这需要大量计算。概率检测是一种优化,它不是对每一个点都检测,而是在图像中随机选取点集合进行运算,检测直线足够用,但是要降低阈值。

这里写图片描述

函数为 cv2.HoughLinesP()

参数为minLineLength表示直线长度的阈值,少于此长度的会被忽略。MaxLineGap两天直线的间隔,小于此值会被当成一条直线。

返回值为直线的起点和终点。

这里写图片描述

这篇关于python opencv入门 Hough直线变换(27)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840964

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(