python opencv入门 Hough直线变换(27)

2024-03-24 08:08

本文主要是介绍python opencv入门 Hough直线变换(27),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自OpenCV-Python Tutorials 自己翻译整理

目标:
理解概念
在图片中检测直线
学习函数cv2.HoughLines(),cv2.HoughLinesP()

原理:
霍夫变换在检测各种形状的技术中十分流行,如果能用数学表达式写出图形的公式,就可以使用霍夫变换来进行检测。

待检测的物体可以存在一些破坏和变型。

直线的表达式为 y=mx+c 或者用极坐标表示为, ρ=xcosθ+ysinθ

ρ表示从原点到直线的垂直距离,θ表示直线的垂线与横轴顺时针方向的夹角。
这里写图片描述

直线在原点下方,ρ是正值,角度小于180。直线在原点上方经过,角度不是大于180度,而是小于180度,但是ρ值取负值。垂直的时候角度为0,水平的时候角度为90度。

霍夫变换是如何实现的?
每条直线都可以用(ρ,θ)表示。
首先创建一个2D数组或者累加器(用来存储两个参数),初始化数组为0。行表示ρ,列表示θ。数组的大小决定了结果是否准确。如果要精度为1度,那么需要180列。
ρ值最大为图片对角线的距离。如果精度要求达到像素级别,那么行数应该等于图像对角线的长度。

如果有一个100×100的水平直线在图像中央(在第50行的位置)。取直线上第一个点(x,y),将点带入方程,遍历θ值从0到180.求出对应的ρ值,这样得到敌对(ρ,θ),如果该值再创建的2D数组(累加器)中的对应位置上也存在,那个该位置加1。所以累加器中位置(50,90)=1。(一个点可能在多条直线当中,所以一个点可能对应多个值加1)。取直线第二个点,重复上述过程。更新累加器中的值。此时(50,90)的值为2。对直线上每个点都按照这种方式操作,最后(50,90)的值肯定最大。这就说明有一条直线。

(注意上面能选取到直线上的点的原因是因为选取的图像边缘信息点)

opencv中的霍夫变换
使用函数cv2.HoughLines(),返回(ρ,θ),ρ的单位是像素,θ是弧度。
输入参数:第一个参数是二值化图像,进行霍夫变换之前要进行二值化或者canny边缘检测。第二第三个参数代表ρ和θ的精度。第四个参数是阈值,只有当累加器中的值高于阈值时才被当成是直线。

import cv2
import numpy as np
img = cv2.imread('18.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rhox1 = int(x0 + 1000*(-b))y1 = int(y0 + 1000*(a))x2 = int(x0 - 1000*(-b))y2 = int(y0 - 1000*(a))cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('houghlines3.jpg',img)

这里写图片描述

概率霍夫变换

上面的过程可以看到一条直线需要两个参数,这需要大量计算。概率检测是一种优化,它不是对每一个点都检测,而是在图像中随机选取点集合进行运算,检测直线足够用,但是要降低阈值。

这里写图片描述

函数为 cv2.HoughLinesP()

参数为minLineLength表示直线长度的阈值,少于此长度的会被忽略。MaxLineGap两天直线的间隔,小于此值会被当成一条直线。

返回值为直线的起点和终点。

这里写图片描述

这篇关于python opencv入门 Hough直线变换(27)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840964

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步