python opencv入门 Hough直线变换(27)

2024-03-24 08:08

本文主要是介绍python opencv入门 Hough直线变换(27),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自OpenCV-Python Tutorials 自己翻译整理

目标:
理解概念
在图片中检测直线
学习函数cv2.HoughLines(),cv2.HoughLinesP()

原理:
霍夫变换在检测各种形状的技术中十分流行,如果能用数学表达式写出图形的公式,就可以使用霍夫变换来进行检测。

待检测的物体可以存在一些破坏和变型。

直线的表达式为 y=mx+c 或者用极坐标表示为, ρ=xcosθ+ysinθ

ρ表示从原点到直线的垂直距离,θ表示直线的垂线与横轴顺时针方向的夹角。
这里写图片描述

直线在原点下方,ρ是正值,角度小于180。直线在原点上方经过,角度不是大于180度,而是小于180度,但是ρ值取负值。垂直的时候角度为0,水平的时候角度为90度。

霍夫变换是如何实现的?
每条直线都可以用(ρ,θ)表示。
首先创建一个2D数组或者累加器(用来存储两个参数),初始化数组为0。行表示ρ,列表示θ。数组的大小决定了结果是否准确。如果要精度为1度,那么需要180列。
ρ值最大为图片对角线的距离。如果精度要求达到像素级别,那么行数应该等于图像对角线的长度。

如果有一个100×100的水平直线在图像中央(在第50行的位置)。取直线上第一个点(x,y),将点带入方程,遍历θ值从0到180.求出对应的ρ值,这样得到敌对(ρ,θ),如果该值再创建的2D数组(累加器)中的对应位置上也存在,那个该位置加1。所以累加器中位置(50,90)=1。(一个点可能在多条直线当中,所以一个点可能对应多个值加1)。取直线第二个点,重复上述过程。更新累加器中的值。此时(50,90)的值为2。对直线上每个点都按照这种方式操作,最后(50,90)的值肯定最大。这就说明有一条直线。

(注意上面能选取到直线上的点的原因是因为选取的图像边缘信息点)

opencv中的霍夫变换
使用函数cv2.HoughLines(),返回(ρ,θ),ρ的单位是像素,θ是弧度。
输入参数:第一个参数是二值化图像,进行霍夫变换之前要进行二值化或者canny边缘检测。第二第三个参数代表ρ和θ的精度。第四个参数是阈值,只有当累加器中的值高于阈值时才被当成是直线。

import cv2
import numpy as np
img = cv2.imread('18.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:a = np.cos(theta)b = np.sin(theta)x0 = a*rhoy0 = b*rhox1 = int(x0 + 1000*(-b))y1 = int(y0 + 1000*(a))x2 = int(x0 - 1000*(-b))y2 = int(y0 - 1000*(a))cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)
cv2.imwrite('houghlines3.jpg',img)

这里写图片描述

概率霍夫变换

上面的过程可以看到一条直线需要两个参数,这需要大量计算。概率检测是一种优化,它不是对每一个点都检测,而是在图像中随机选取点集合进行运算,检测直线足够用,但是要降低阈值。

这里写图片描述

函数为 cv2.HoughLinesP()

参数为minLineLength表示直线长度的阈值,少于此长度的会被忽略。MaxLineGap两天直线的间隔,小于此值会被当成一条直线。

返回值为直线的起点和终点。

这里写图片描述

这篇关于python opencv入门 Hough直线变换(27)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840964

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核