AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载)

2024-03-24 02:28

本文主要是介绍AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SDXL算法概述

SDXL(Stable Diffusion XL)是Stable Diffusion公司发布的一款图像生成大模型。在以往的模型基础上,SDXL进行了极大的升级,其base模型参数数量达到了35亿,refiner模型参数数量达到了66亿。SDXL与之前的版本最大的不同之处在于它由base基础模型和refiner优化模型两个模型构成,使得用户可以在base模型的基础上再利用优化模型进行绘画,从而更有针对性地优化图像质量。
在这里插入图片描述
在这里,第一个模型被称为基础模型(base model)。而第二个模型则是细化模型,它在基础模型生成的图像基础上进一步细化图像的细节。细化模型与基础模型采用相同的VAE潜在扩散模型,但在训练时仅使用较低的噪声水平。在推断时,仅使用细化模型的图像生成能力。对于一个提示,首先使用基础模型生成潜在表示,然后给这个潜在表示添加一定的噪声(通过扩散过程),并使用细化模型进行去噪。通过这种重新添加和去除噪声的过程,图像的局部细节会有所提升。

级联细化模型实际上相当于一种模型集成策略,这种策略在文本生成图像领域已经得到了应用。例如,NVIDIA在《eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers》中提出了集成不同的扩散模型来提升生成质量。另外,利用潜在扩散的图像生成来提升质量也已经得到了应用,例如Stable Diffusion web UI中的high res fix就是基于图像生成来实现的(结合超分辨率模型)。

细化模型和基础模型在结构上有一定的不同,其UNet结构如下图所示,细化模型采用4个阶段,第一个阶段同样采用没有注意力的DownBlock2D,网络的特征维度为384,而基础模型为320。此外,细化模型的注意力模块中的transformer block数量均设置为4。细化模型的参数量为2.3B,略小于基础模型。

另外,细化模型的文本编码器仅使用了OpenCLIP ViT-bigG,同样提取倒数第二层特征和池化文本嵌入。与基础模型相同,细化模型也使用了大小和裁剪条件,此外还增加了图像的艺术评分(aesthetic-score)作为条件,处理方式与之前相同。细化模型可能没有采用多尺度微调,因此没有引入目标尺寸作为条件(细化模型仅用于图像生成,可以直接适应各种尺度)。

SDXL的优缺点

优点

  1. 更大的体积和分辨率:SDXL的容量相比之前版本大幅增加,支持基于1024*1024的高清图片进行训练,这使得生成的图像更加清晰、细节更加丰富。
  2. 更智能的文字和语言识别:SDXL可以直接生成带有文字的图片,用户可以使用特定的句式来生成带有文字的图片。

1 girl is wearing a helmetthe helmet with the words"SDXL" written on it,
在这里插入图片描述

  1. 同时,SDXL对自然语言的识别能力也得到了提升,不再需要加入大量质量关键词,只需很少的语句就能生成高质量的图片。

A girl with red hair is doing her homework,
在这里插入图片描述

  1. 更好的人体结构:SDXL在人体结构方面有了更精细的控制,一定程度上解决了面部变形和多余肢体等问题。

A solitary, beautiful woman stands gracefully, waiting with an anxious expression on her face,
在这里插入图片描述

  1. 更多的绘画风格:SDXL支持在同一个模型中绘制各种风格的图像,包括照片风格、动漫风格、数字艺术风格、漫画书风格、折纸风格、线条风格、工艺黏土风格、3D模型风格、像素风格等等。

缺点

内存需求更大,对显卡显存的需求也随之增加。SDXL要求至少8GB的显存才能运行,要想流畅使用则需要超过12GB,相比之下,之前的SD1.5对显存的需求较低,最低要求仅为4GB。这也解释了为什么对于一些用户来说,使用SDXL需要配置较高的电脑硬件,而高端显卡的价格也相对较高。

SDXL的ComfyUI工作流搭建

在这里插入图片描述

模型与工作流下载

链接:https://pan.baidu.com/s/1gb6iybzyq71XGumTrguj8w
提取码:byyk
感兴趣可加入:566929147 企鹅群一起学习讨论

这篇关于AIGC——ComfyUI使用SDXL双模型的工作流(附件SDXL模型下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840221

相关文章

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景