深度学习掩膜_深度学习在AEC中的应用探索

2024-03-23 23:40

本文主要是介绍深度学习掩膜_深度学习在AEC中的应用探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

7e1a71eb2e8f7887bf9a241f6ca1d4f8.png
本文来自大象声科高级算法工程师闫永杰在LiveVideoStackCon2019北京大会上的分享。 闫永杰介绍了深度学习在回声消除(AEC)中的应用。 正如我们所知,AEC是 在线音视频通话(VoIP)领域中一个非常棘手的问题,目前应用比较广泛的AEC方法主要还是基于传统信号处理的方法。 大象声科在成功将深度学习应用于人声和噪声分离的基础上,正在通过引入深度学习技术,解决回声消除问题。
  文 / 闫永杰 策划 / LiveVideoStack AEC问题定义 6fb2a58e870f0ee7274f32e7048dd217.png 上图是个典型的AEC 系统,我们先看左框和右框。 我们可以想象为两个人通电话,从左框看到的远端信号(Far-End)是指对方传过来的信号x(n),而右框的近端信号(Near-End)指着本地麦克风收到的信号y(n)。 传统意义上,AEC 的问题目标在于去除回声的分量d(n),  如果一个 VOIP 通话系统后面还会有降噪算法将近端语音中的背景噪声v(n)去掉, 使得我们送给对方的信号是纯净的语音s’(n)。 当我们打电话时听到自己讲话的声音,其实是对方的手机AEC算法出现了问题. 在对方设备AEC算法没把你的声音消掉的情况下,就会听到自己的声音。 这里我们强调一点,传统AEC问题定义只针对回声分量去除,对噪音毫无影响。   简单介绍传统自适应算法原理 76e6ad8b8e990add231a2d6783e9fc8b.png 第一,我们必须在近端没有讲话情况下做计算,来估计参考信号到回声的传输路径,也就是常说的回声路径。 回声路径的估计至关重要,如果回声路径估计不准确,后续步骤都会出问题。 第二,如果第一步我们得到了准确的回声路径h(n), 那么我们用得到的远端信号和h(n)进行卷积,就算得了估计的回声分量 第三, 麦克风收到的近端信号减去第二步中估计的回声分量,将会得到AEC 的结果   传统自适应算法存在的问题 ec61cdf0fe49e3e3ff8649ab77f6a392.png 第一,算法要求在仅有远端信号段才能做回声路径的估计,因此双讲检测(Double-Talk)要求要非常准确。

这篇关于深度学习掩膜_深度学习在AEC中的应用探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839883

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#