yolov6实现遥感影像目标识别|以DIOR数据集为例

2024-03-23 23:36

本文主要是介绍yolov6实现遥感影像目标识别|以DIOR数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

alt 1

目标检测是计算机视觉领域中的一项重要任务,它的目标是在图像或视频中检测出物体的位置和类别。YOLO(You Only Look Once)是一系列经典的目标检测算法,最初由Joseph Redmon等人于2016年提出。YOLO算法具有快速、简单、端到端的特点,并且在速度和准确率上取得了很好的平衡,因此受到了广泛的关注和应用。

YOLO系列算法的核心思想是将目标检测问题转化为一个回归问题。它将整个图像分成一个固定大小的网格,每个网格负责检测该网格内的物体。YOLO算法在每个网格上预测多个边界框(bounding box),以及每个边界框所属的物体类别以及置信度分数。

YOLO算法系列有多个版本,包括YOLOv1、YOLOv2(也称为YOLO9000)、YOLOv3和YOLOv4等。每个版本都在YOLO的基础上进行了改进,提高了检测精度、速度和通用性。

「今天我们将实现YOLO V6的遥感影像目标检测。」

YOLO V6

YOLOv6 是美团视觉智能部研发的一款目标检测框架,致力于工业应用。本框架同时专注于检测的精度和推理效率,在工业界常用的尺寸模型中:YOLOv6-nano 在 COCO 上精度可达 35.0% AP,在 T4 上推理速度可达 1242 FPS;YOLOv6-s 在 COCO 上精度可达 43.1% AP,在 T4 上推理速度可达 520 FPS。在部署方面,YOLOv6 支持 GPU(TensorRT)、CPU(OPENVINO)、ARM(MNN、TNN、NCNN)等不同平台的部署,极大地简化工程部署时的适配工作。目前,项目已开源至 Github。

解决的问题:

RepVGG提出的结构重参数化方法表现良好,但在此之前没有检测模型使用。作者认为RepVGG的block缩放不合理,小模型和大模型没必要保持相似网络结构;小模型使用单路径架构,大模型就不适合在单路径上堆参数量。

使用重参数化的方法后,检测器的量化也需要重新考虑,否则因为训练和推理时的结构不同,性能可能会退化。

前期工作很少关注部署。前期工作中,推理是在V100等高配机器完成的,但实际使用时往往用T4等低功耗推理gpu,作者更关注后者的性能。

针对网络结构的变化,重新考虑标签分配和损失函数。

对于部署,可以调整训练策略,在不增加推理成本的情况下提升性能,如使用知识蒸馏。

具体实现:

网络设计

在one-satge的目标检测网络中,Backbone决定了表征能力,也很大程度上影响了参数量和推理效率;Neck主要作用是聚合高低层次的语义信息;Head由几个卷积层组成,负责预测最终结果。

考虑到硬件推理的因素,YOLOv6提出两个可缩放的可重参数化的Backbone和Neck来适应不同大小的模型,还提出一个使用混合通道策略的高效解耦头,总体网络结构如下:

alt

BackBone

在分类性能上,多分支网络相比单分支表现更好,但随并行性降低,其推理速度减慢。RepVGG的结构重参数化方式,采用多分支训练和单分支推理,达到了较好的精度-速度权衡。 alt YOLOv6设计了可重参数化的Backbone并命名为EfficientRep。对于小模型,backbone的主要组成部分是训练阶段的 RepBlock,如图2(a)所示。在推理阶段,RepBlock转换为3×3卷积层+ReLU激活函数的堆叠(记为 RepConv),如图2(b)所示。因为3*3卷积在CPU和GPU上优化和计算密度都更好,所以在增强表征能力的同时,可以有效利用计算资源同时增加推理速度。 然而随模型容量增加,单路径模型的计算代价和参数量呈指数级提升,所以改用CSPStackRep Block作为中大型网络的Backbone,如图2(c)所示。CSPStackRep Block由三个1×1卷积和两个带残差连接的RepVGG block(训练使用)或RepConv(推理使用)组成的模块堆叠。可以在不增加计算成本的前提下提升性能,做到准确率和速度的权衡。

Neck

集成多尺度的特征是检测模型常用且有效的手段,YOLOv6也不例外,在PAN的基础上,把CSPBlock替换为RepBlock(小模型使用)或CSPStackRep Block(大模型使用),并调整宽度和深度,将YOLOv6的颈部命名为Rep-PAN。

Head

YOLOv5的检测头在分类和回归上共享参数,而FCOS和YOLOX将两个分支解耦,在每个分支中引入两个额外3×3卷积层提高性能。YOLOv6则采用混合通道策略构建高效解耦头,即中间3*3卷积只使用一个,Head的宽度由Backbone和Neck的宽度因子共同缩放,从而进一步降低了计算成本和延迟。此外,YOLOv6使用基于锚点的Anchor free方式,预测锚点到边界框四周的距离。

源码

源码地址;https://github.com/meituan/YOLOv6

安装

git clone https://github.com/meituan/YOLOv6
cd YOLOv6
pip install -r requirements.txt

DIOR数据集

「DIOR」由23463张最优遥感图像和190288个目标实例组成,这些目标实例用轴向对齐的边界框手动标记,由192472个轴对齐的目标边界框注释组成。数据集中图像大小为800×800像素,空间分辨率为0.5m ~ 30m。该数据集分为训练验证集(11725张图像)和测试集(11738张图像)。 「DIOR」是一个用于光学遥感图像目标检测的大规模基准数据集。涵盖20个对象类。这20个对象类是飞机、机场、棒球场、篮球场、桥梁、烟囱、水坝、高速公路服务区、高速公路收费站、港口、高尔夫球场、地面田径场、天桥、船舶、体育场、储罐、网球场、火车站、车辆和风磨。 论文地址:Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

数据集处理

由于dior数据集是voc格式,所以需要将其转换为yolo格式。可以参照yolo v6中给出的voc2yolo.py。

也可以参照以下的方法。

新建一个文件夹JPEGImages,将JPEGImages-test和PEGImages-trainval里的图片都放进JPEGImages里面。 代码参考链接:https://blog.csdn.net/weixin_43365477/article/details/135622835

# coding:utf-8

import os
import random
import argparse

import xml.etree.ElementTree as ET
from os import getcwd
from shutil import copyfile


parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='DIOR/Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main

opt = parser.parse_args()

sets = ['train''val''test']
classes = ['airplane''airport''baseballfield''basketballcourt''bridge''chimney''dam',
              'Expressway-Service-area''Expressway-toll-station''golffield''groundtrackfield''harbor',
              'overpass''ship''stadium''storagetank''tenniscourt''trainstation''vehicle''windmill']

abs_path = os.getcwd()
print(abs_path)


# if not os.path.exists('/DIOR'):
#     os.makedirs('DIOR')

if not os.path.exists('DIOR_dataset/labels/'):
    os.makedirs('DIOR_dataset/labels/')
if not os.path.exists('DIOR_dataset/labels/train'):
    os.makedirs('DIOR_dataset/labels/train')
if not os.path.exists('DIOR_dataset_yolo/labels/test'):
    os.makedirs('DIOR_dataset/labels/test')
if not os.path.exists('DIOR_dataset_yolo/labels/val'):
    os.makedirs('DIOR_dataset/labels/val')


if not os.path.exists('DIOR_dataset/images/'):
    os.makedirs('DIOR_dataset/images/')
if not os.path.exists('DIOR_dataset/images/train'):
    os.makedirs('DIOR_dataset/images/train')
if not os.path.exists('DIOR_dataset/images/test'):
    os.makedirs('DIOR_dataset/images/test')
if not os.path.exists('DIOR_dataset/images/val'):
    os.makedirs('DIOR_dataset/images/val')


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h

def convert_annotation(image_id, path):
#输入输出文件夹,根据实际情况进行修改
    in_file = open('DIOR/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('DIOR_dataset/labels/' + path + '/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        #difficult = obj.find('difficult').text
        #difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')



train_percent = 0.6
test_percent = 0.2
val_percent = 0.2

xmlfilepath = opt.xml_path
# txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
# if not os.path.exists(txtsavepath):
#     os.makedirs(txtsavepath)

num = len(total_xml)
list_index = range(num)
list_index = list(list_index)
random.shuffle(list_index)


train_nums = list_index[:int(num * train_percent)]
test_nums = list_index[int(num * train_percent): int(num * test_percent)+int(num * train_percent)]
val_nums = list_index[int(num * test_percent)+int(num * train_percent):]



for i in list_index:
    name = total_xml[i][:-4]
    if i in train_nums:
        convert_annotation(name, 'train')   # lables
        image_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'
        image_target_path = 'DIOR_dataset/images/train/' + name + '.jpg'
        copyfile(image_origin_path, image_target_path)

    if i in test_nums:
        convert_annotation(name, 'test')   # lables
        image_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'
        image_target_path = 'DIOR_dataset/images/test/' + name + '.jpg'
        copyfile(image_origin_path, image_target_path)

    if i in val_nums:
        convert_annotation(name, 'val')   # lables
        image_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'
        image_target_path = 'DIOR_dataset/images/val/' + name + '.jpg'
        copyfile(image_origin_path, image_target_path)

最终会生成yolo格式的数据集,且按训练集、验证集、测试集划分开。最终数据集形式如下 alt

YOLO V6训练DIOR

YOLO V6的操作文档可以看这里:https://yolov6-docs.readthedocs.io/zh-cn/latest/ 我们针对我们制作的DIOR数据集,来修改参数。

修改dataset.yaml

找到源代码中data/dataset.yaml。

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
# 放入刚处理的DIOR数据集路径
train: .\DIOR_dataset\images\train # train images
val: .\DIOR_dataset\images\val # val images
test: .\DIOR_dataset\images\test # test images (optional)

# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False

# Classes,类别名
nc: 20  # number of classes
names: ['airplane''airport''baseballfield''basketballcourt''bridge''chimney''dam',
              'Expressway-Service-area''Expressway-toll-station''golffield''groundtrackfield''harbor',
              'overpass''ship''stadium''storagetank''tenniscourt''trainstation''vehicle''windmill']  # class names

修改train.py

找到源代码中tools/train.py。 修改img-size为800,其他选项根据注释自行修改。

训练

运行train.py

测试

训练结束后,运行tools/eval.py。即可验证精度(注意weights改成训练结果路径),img-size为800。

输出结果

运行tools/infer.py source为test图片路径,其它参数根据注释选择性修改。 部分测试结果如下。 alt alt alt alt

总结

今天的分享就到这里,感兴趣的可以自行下载数据集与源代码试试。

往期精彩

SENet实现遥感影像场景分类
SENet实现遥感影像场景分类
DFANet|实现遥感影像道路提取
DFANet|实现遥感影像道路提取
基于topformer实现遥感影像道路提取
基于topformer实现遥感影像道路提取
segformer实现多分类遥感影像语义分割
segformer实现多分类遥感影像语义分割
pyqt5实现语义分割GUI界面工具
pyqt5实现语义分割GUI界面工具

本文由 mdnice 多平台发布

这篇关于yolov6实现遥感影像目标识别|以DIOR数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839865

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat