每周一算法:迭代加深A*

2024-03-23 22:20
文章标签 算法 迭代 加深 每周

本文主要是介绍每周一算法:迭代加深A*,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

AcWing 180. 排书

题目描述

给定 n n n 本书,编号为 1 ∼ n 1\sim n 1n

在初始状态下,书是任意排列的。

在每一次操作中,可以抽取其中连续的一段,再把这段插入到其他某个位置。

我们的目标状态是把书按照 1 ∼ n 1\sim n 1n 的顺序依次排列。

求最少需要多少次操作。

输入格式

第一行包含整数 T T T,表示共有 T T T组测试数据。
每组数据包含两行,第一行为整数 n n n,表示书的数量。
第二行为 n n n个整数,表示 1 ∼ n 1\sim n 1n 的一种任意排列。

同行数之间用空格隔开。

输出格式

每组数据输出一个最少操作次数。

如果最少操作次数大于或等于 5 5 5次,则输出5 or more

每个结果占一行。

数据范围

1 ≤ n ≤ 15 1≤n≤15 1n15

输入样例

3
6
1 3 4 6 2 5
5
5 4 3 2 1
10
6 8 5 3 4 7 2 9 1 10

输出样例

2
3
5 or more

算法思想

根据题目描述,需要对 1 ∼ n 1\sim n 1n的一个排列,进行若干次操作,在每一次操作中,可以抽取序列中连续的一段,再把这段插入到其他某个位置。问最少经过几次操作,可以将序列变为按照 1 ∼ n 1\sim n 1n 的顺序依次排列。

先考虑每一次操作的决策数量:

  • 当从序列中抽取长度为 i i i的一段时,有 n − i + 1 n-i+1 ni+1种选择。例如:对于长度 n = 6 n=6 n=6的序列中,抽取长度为 i = 3 i=3 i=3的连续一段,有 4 4 4种选择,如下图所示
    在这里插入图片描述
  • 对于每种抽法,有 n − i n-i ni种放法,即将长度为 i i i的一段插入其它 n − i n-i ni个空中。例如:
    在这里插入图片描述

那么每一步状态数量为 ( n − i ) × ( n − i + 1 ) (n-i)\times(n-i+1) (ni)×(ni+1),但将某一段向前移动,等价于将跳过的那段向后移动,因此每种移动方式被计算了两次,还要除以 2 2 2。所以状态空间的大小为 ∑ i = 1 n ( n − i ) × ( n − i + 1 ) / 2 ≤ ( 15 × 14 + 14 × 13 + . . . + 2 × 1 ) / 2 = 560 \sum_{i=1}^n(n-i)\times(n-i+1)/2\le(15\times14+14\times13+...+2\times1)/2=560 i=1n(ni)×(ni+1)/2(15×14+14×13+...+2×1)/2=560

考虑在 4 4 4步内找到答案,最多有 56 0 4 560^4 5604个状态,暴力搜索会超时。可以使用双向广搜 或者迭代加深A*(IDA* )来优化。

迭代加深A*

在A*算法算法中,将估价函数与优先队列BFS结合,提高了搜索效率。那么把估价函数与迭代加深的DFS结合就是迭代加深 A* \text{A*} A* IDA* \text{IDA*} IDA*)。

迭代加深 A* \text{A*} A*要限定一个深度,在不超过该深度的前提下执行DFS,若找不到解,就扩大深度限制,重新进行搜索;除此之外,还要设计一个估价函数,估算从每个状态到目标状态需要的“步数”。与 A* \text{A*} A*算法一样,估价函数需要遵守“预计值不大于未来实际步数”的准则。

基本思想是以迭代加深DFS的搜索框架为基础,把原来简单的深度限制加强为:若当前深度+未来估计步数>深度限制,则立即从当前分支回溯

估价函数

IDA* \text{IDA*} IDA*的算法的关键在于设计估价函数,那么本题的估价函数如何设计?考虑对于目标状态,第 i i i本书后边应该是第 i + 1 i+1 i+1本书,那么认为 i + 1 i+1 i+1 i i i的正确后继。

对于任意状态,考虑整个排列中错误的后继总数,将其记为tot,可以发现每次操作至多更改 3 3 3本数的后继,例如,将 346 346 346移动到 2 2 2的后面, 1 、 2 、 6 1、2、6 126的后继被更改,如下图所示:将346移动到2的后面,126的后继被更改
也就是说,在最理想的情况下,每次操作都能把 3 3 3个错误后继全部该对,那么消除所有错误后继的操作次数也至少需要 ⌈ t o t 3 ⌉ \lceil\frac{tot}{3}\rceil 3tot次。

因此,可以把一个状态state的估价函数设计为 h ( s t a t e ) = ⌈ t o t 3 ⌉ h(state)=\lceil\frac{tot}{3}\rceil h(state)=3tot,其中tot表示在当前状态state下书的错误后继总数。

算法实现

基本思想是使用迭代加深的方法,从 1 ∼ 4 1\sim4 14依次限制搜索深度,然后从起始状态出发进行DFS。对于当前状态:

  • 如果若当前步数+未来估计步数>深度限制,则搜索结束返回无解。
  • 如果到达最终状态,搜索结束返回有解。
  • 枚举要抽连续的一段的左右位置 [ L , R ] [L, R] [L,R],以及插入位置 i i i,将 [ L , R ] [L, R] [L,R]这一段插入到 i i i位置后
    • 继续搜索下一阶段的状态

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 20;
int n, q[N], b[5][N]; //备份数组
int h() //估价函数
{int tot = 0; //统计错误后继总数for(int i = 0; i + 1 < n; i ++)if(q[i] + 1 != q[i + 1]) tot ++;return (tot + 2) / 3; //总数÷3向上取整
}
bool check()
{for(int i = 0; i < n; i ++)if(q[i] != i + 1) return false;return true;
}
//当前步数k,限制深度depth
bool dfs(int k, int depth)
{if(k + h() > depth) return false; //当前步数+估计步数超过限制if(check()) return true;//枚举抽取的左右两端和插入位置for(int L = 0; L < n; L ++)for(int R = L; R < n; R ++)for(int i = R + 1; i < n; i ++) //注意只需要枚举后面的插入位置即可{memcpy(b[k], q, sizeof q); //备份,方便恢复现场int x, y;//将[R+1,i]位置上的数向前移动for(x = R + 1, y = L; x <= i; x ++, y ++) q[y] = b[k][x];//将[L,R]位置上的数,向后移动for(x = L; x <= R; x ++, y ++) q[y] = b[k][x];if(dfs(k + 1, depth)) return true;memcpy(q, b[k], sizeof q); //备份,方便恢复现场}return false;
}
int main()
{int T;cin >> T;while(T --){cin >> n;for(int i = 0; i < n; i ++) cin >> q[i];int depth = 0;while(depth < 5 && !dfs(0, depth)) depth ++;if(depth >= 5) puts("5 or more");else cout << depth << '\n';}return 0;
}

这篇关于每周一算法:迭代加深A*的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839680

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/