每周一算法:迭代加深A*

2024-03-23 22:20
文章标签 算法 迭代 加深 每周

本文主要是介绍每周一算法:迭代加深A*,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

AcWing 180. 排书

题目描述

给定 n n n 本书,编号为 1 ∼ n 1\sim n 1n

在初始状态下,书是任意排列的。

在每一次操作中,可以抽取其中连续的一段,再把这段插入到其他某个位置。

我们的目标状态是把书按照 1 ∼ n 1\sim n 1n 的顺序依次排列。

求最少需要多少次操作。

输入格式

第一行包含整数 T T T,表示共有 T T T组测试数据。
每组数据包含两行,第一行为整数 n n n,表示书的数量。
第二行为 n n n个整数,表示 1 ∼ n 1\sim n 1n 的一种任意排列。

同行数之间用空格隔开。

输出格式

每组数据输出一个最少操作次数。

如果最少操作次数大于或等于 5 5 5次,则输出5 or more

每个结果占一行。

数据范围

1 ≤ n ≤ 15 1≤n≤15 1n15

输入样例

3
6
1 3 4 6 2 5
5
5 4 3 2 1
10
6 8 5 3 4 7 2 9 1 10

输出样例

2
3
5 or more

算法思想

根据题目描述,需要对 1 ∼ n 1\sim n 1n的一个排列,进行若干次操作,在每一次操作中,可以抽取序列中连续的一段,再把这段插入到其他某个位置。问最少经过几次操作,可以将序列变为按照 1 ∼ n 1\sim n 1n 的顺序依次排列。

先考虑每一次操作的决策数量:

  • 当从序列中抽取长度为 i i i的一段时,有 n − i + 1 n-i+1 ni+1种选择。例如:对于长度 n = 6 n=6 n=6的序列中,抽取长度为 i = 3 i=3 i=3的连续一段,有 4 4 4种选择,如下图所示
    在这里插入图片描述
  • 对于每种抽法,有 n − i n-i ni种放法,即将长度为 i i i的一段插入其它 n − i n-i ni个空中。例如:
    在这里插入图片描述

那么每一步状态数量为 ( n − i ) × ( n − i + 1 ) (n-i)\times(n-i+1) (ni)×(ni+1),但将某一段向前移动,等价于将跳过的那段向后移动,因此每种移动方式被计算了两次,还要除以 2 2 2。所以状态空间的大小为 ∑ i = 1 n ( n − i ) × ( n − i + 1 ) / 2 ≤ ( 15 × 14 + 14 × 13 + . . . + 2 × 1 ) / 2 = 560 \sum_{i=1}^n(n-i)\times(n-i+1)/2\le(15\times14+14\times13+...+2\times1)/2=560 i=1n(ni)×(ni+1)/2(15×14+14×13+...+2×1)/2=560

考虑在 4 4 4步内找到答案,最多有 56 0 4 560^4 5604个状态,暴力搜索会超时。可以使用双向广搜 或者迭代加深A*(IDA* )来优化。

迭代加深A*

在A*算法算法中,将估价函数与优先队列BFS结合,提高了搜索效率。那么把估价函数与迭代加深的DFS结合就是迭代加深 A* \text{A*} A* IDA* \text{IDA*} IDA*)。

迭代加深 A* \text{A*} A*要限定一个深度,在不超过该深度的前提下执行DFS,若找不到解,就扩大深度限制,重新进行搜索;除此之外,还要设计一个估价函数,估算从每个状态到目标状态需要的“步数”。与 A* \text{A*} A*算法一样,估价函数需要遵守“预计值不大于未来实际步数”的准则。

基本思想是以迭代加深DFS的搜索框架为基础,把原来简单的深度限制加强为:若当前深度+未来估计步数>深度限制,则立即从当前分支回溯

估价函数

IDA* \text{IDA*} IDA*的算法的关键在于设计估价函数,那么本题的估价函数如何设计?考虑对于目标状态,第 i i i本书后边应该是第 i + 1 i+1 i+1本书,那么认为 i + 1 i+1 i+1 i i i的正确后继。

对于任意状态,考虑整个排列中错误的后继总数,将其记为tot,可以发现每次操作至多更改 3 3 3本数的后继,例如,将 346 346 346移动到 2 2 2的后面, 1 、 2 、 6 1、2、6 126的后继被更改,如下图所示:将346移动到2的后面,126的后继被更改
也就是说,在最理想的情况下,每次操作都能把 3 3 3个错误后继全部该对,那么消除所有错误后继的操作次数也至少需要 ⌈ t o t 3 ⌉ \lceil\frac{tot}{3}\rceil 3tot次。

因此,可以把一个状态state的估价函数设计为 h ( s t a t e ) = ⌈ t o t 3 ⌉ h(state)=\lceil\frac{tot}{3}\rceil h(state)=3tot,其中tot表示在当前状态state下书的错误后继总数。

算法实现

基本思想是使用迭代加深的方法,从 1 ∼ 4 1\sim4 14依次限制搜索深度,然后从起始状态出发进行DFS。对于当前状态:

  • 如果若当前步数+未来估计步数>深度限制,则搜索结束返回无解。
  • 如果到达最终状态,搜索结束返回有解。
  • 枚举要抽连续的一段的左右位置 [ L , R ] [L, R] [L,R],以及插入位置 i i i,将 [ L , R ] [L, R] [L,R]这一段插入到 i i i位置后
    • 继续搜索下一阶段的状态

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 20;
int n, q[N], b[5][N]; //备份数组
int h() //估价函数
{int tot = 0; //统计错误后继总数for(int i = 0; i + 1 < n; i ++)if(q[i] + 1 != q[i + 1]) tot ++;return (tot + 2) / 3; //总数÷3向上取整
}
bool check()
{for(int i = 0; i < n; i ++)if(q[i] != i + 1) return false;return true;
}
//当前步数k,限制深度depth
bool dfs(int k, int depth)
{if(k + h() > depth) return false; //当前步数+估计步数超过限制if(check()) return true;//枚举抽取的左右两端和插入位置for(int L = 0; L < n; L ++)for(int R = L; R < n; R ++)for(int i = R + 1; i < n; i ++) //注意只需要枚举后面的插入位置即可{memcpy(b[k], q, sizeof q); //备份,方便恢复现场int x, y;//将[R+1,i]位置上的数向前移动for(x = R + 1, y = L; x <= i; x ++, y ++) q[y] = b[k][x];//将[L,R]位置上的数,向后移动for(x = L; x <= R; x ++, y ++) q[y] = b[k][x];if(dfs(k + 1, depth)) return true;memcpy(q, b[k], sizeof q); //备份,方便恢复现场}return false;
}
int main()
{int T;cin >> T;while(T --){cin >> n;for(int i = 0; i < n; i ++) cin >> q[i];int depth = 0;while(depth < 5 && !dfs(0, depth)) depth ++;if(depth >= 5) puts("5 or more");else cout << depth << '\n';}return 0;
}

这篇关于每周一算法:迭代加深A*的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839680

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Mybatis从3.4.0版本到3.5.7版本的迭代方法实现

《Mybatis从3.4.0版本到3.5.7版本的迭代方法实现》本文主要介绍了Mybatis从3.4.0版本到3.5.7版本的迭代方法实现,包括主要的功能增强、不兼容的更改和修复的错误,具有一定的参考... 目录一、3.4.01、主要的功能增强2、selectCursor example3、不兼容的更改二、

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系