Orbit 使用指南 08 | 登记注册环境 | Isaac Sim | Omniverse

2024-03-23 10:04

本文主要是介绍Orbit 使用指南 08 | 登记注册环境 | Isaac Sim | Omniverse,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如是我闻: 在上一个指南中,我们学习了如何创建一个自定义的车杆环境。我们通过导入环境类及其配置类来手动创建了一个环境实例

    # create environment configurationenv_cfg = CartpoleEnvCfg()env_cfg.scene.num_envs = args_cli.num_envs# setup RL environmentenv = RLTaskEnv(cfg=env_cfg)

虽然这种方法直接明了,但当我们拥有大量的环境时,这种方法并咋能扩展。在指南08中,我们将展示如何使用gymnasium.register()方法将环境注册到gymnasium注册表中。这样我们就可以通过gymnasium.make()函数创建环境。

import omni.isaac.orbit_tasks  # noqa: F401
from omni.isaac.orbit_tasks.utils import parse_env_cfgdef main():"""Random actions agent with Orbit environment."""# create environment configurationenv_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric)# create environmentenv = gym.make(args_cli.task, cfg=env_cfg)

指南对应于orbit/source/standalone/environments目录中的random_agent.py脚本。让我们先搂一眼完整代码长啥样。

# Copyright (c) 2022-2024, The ORBIT Project Developers.
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause"""Script to an environment with random action agent."""from __future__ import annotations"""Launch Isaac Sim Simulator first."""import argparsefrom omni.isaac.orbit.app import AppLauncher# add argparse arguments
parser = argparse.ArgumentParser(description="Random agent for Orbit environments.")
parser.add_argument("--cpu", action="store_true", default=False, help="Use CPU pipeline.")
parser.add_argument("--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli = parser.parse_args()# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app"""Rest everything follows."""import gymnasium as gym
import torchimport omni.isaac.contrib_tasks  # noqa: F401
import omni.isaac.orbit_tasks  # noqa: F401
from omni.isaac.orbit_tasks.utils import parse_env_cfgdef main():"""Random actions agent with Orbit environment."""# create environment configurationenv_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric)# create environmentenv = gym.make(args_cli.task, cfg=env_cfg)# print info (this is vectorized environment)print(f"[INFO]: Gym observation space: {env.observation_space}")print(f"[INFO]: Gym action space: {env.action_space}")# reset environmentenv.reset()# simulate environmentwhile simulation_app.is_running():# run everything in inference modewith torch.inference_mode():# sample actions from -1 to 1actions = 2 * torch.rand(env.action_space.shape, device=env.unwrapped.device) - 1# apply actionsenv.step(actions)# close the simulatorenv.close()if __name__ == "__main__":# run the main functionmain()# close sim appsimulation_app.close()

代码解析

envs.RLTaskEnv类继承自gymnasium.Env类以遵循标准接口。然而,与传统的Gym环境不同,envs.RLTaskEnv实现了一个向量化环境。这意味着多个环境实例同时在同一个进程中运行,并且所有数据都以批处理方式返回。

使用gym登记档

要注册一个环境,我们使用gymnasium.register()方法。这个方法接收环境名称、环境类的入口点以及环境配置类的入口点。对于车杆环境,以下是在omni.isaac.orbit_tasks.classic.cartpole子包中的注册调用示例:

import gymnasium as gymfrom . import agents
from .cartpole_env_cfg import CartpoleEnvCfg##
# Register Gym environments.
##gym.register(id="Isaac-Cartpole-v0",entry_point="omni.isaac.orbit.envs:RLTaskEnv",disable_env_checker=True,kwargs={"env_cfg_entry_point": CartpoleEnvCfg,"rl_games_cfg_entry_point": f"{agents.__name__}:rl_games_ppo_cfg.yaml","rsl_rl_cfg_entry_point": agents.rsl_rl_ppo_cfg.CartpolePPORunnerCfg,"skrl_cfg_entry_point": f"{agents.__name__}:skrl_ppo_cfg.yaml","sb3_cfg_entry_point": f"{agents.__name__}:sb3_ppo_cfg.yaml",},
)

id参数是环境的名称。约定俗成的,我们将所有环境都以前缀Isaac-命名,以便于在注册表中搜索它们。环境名称通常由任务名称跟随,然后是机器人的名称。例如,对于在平坦地形上的四足机器人ANYmal C的步态运动,环境被称为Isaac-Velocity-Flat-Anymal-C-v0。版本号v<N>通常用于指定同一环境的不同变体。否则,环境的名称可能变得过长且难以阅读。

entry_point参数是环境类的入口点。入口点是形如:的字符串。在车杆环境的案例中,入口点是omni.isaac.orbit.envs:RLTaskEnv。入口点用于在创建环境实例时导入环境类。

env_cfg_entry_point参数指定了环境的默认配置。默认配置使用omni.isaac.orbit_tasks.utils.parse_env_cfg()函数加载。然后,它被传递给gymnasium.make()函数以创建环境实例。配置入口点可以是一个YAML文件或一个python配置类。

创建环境

为了让gym注册表了解omni.isaac.orbit_tasks扩展提供的所有环境,我们必须在脚本开始时导入该模块。这将执行__init__.py文件,该文件遍历所有子包并注册它们各自的环境。

import omni.isaac.orbit_tasks  # noqa: F401

在本指南中,任务名称从命令行读取。任务名称用于解析默认配置以及创建环境实例。此外,其他解析的命令行参数,如环境数量、模拟设备和是否渲染,用于覆盖默认配置。

    # create environment configurationenv_cfg = parse_env_cfg(args_cli.task, use_gpu=not args_cli.cpu, num_envs=args_cli.num_envs, use_fabric=not args_cli.disable_fabric)# create environmentenv = gym.make(args_cli.task, cfg=env_cfg)

一旦创建了环境,其余的执行将遵循标准的重置和步进过程。

代码运行

现在让我们运行脚本来查看结果:

./orbit.sh -p source/standalone/environments/random_agent.py --task Isaac-Cartpole-v0 --num_envs 32

这应该会打开一个展台,其内容与之前的创建RL环境教程类似。要停止模拟,可以选择关闭窗口,或在终端中按Ctrl+C。
在这里插入图片描述

此外,还可以通过添加--cpu指示,将模拟设备从GPU更改为CPU:

./orbit.sh -p source/standalone/environments/random_agent.py --task Isaac-Cartpole-v0 --num_envs 32 --cpu

使用--cpu指示,模拟将在CPU上运行。这对于调试模拟很有用。然而,模拟在CPU上的运行速度将比在GPU上慢得多(拜老黄)。

愿本文除一切机器人模拟器苦

以上

这篇关于Orbit 使用指南 08 | 登记注册环境 | Isaac Sim | Omniverse的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837961

相关文章

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Centos环境下Tomcat虚拟主机配置详细教程

《Centos环境下Tomcat虚拟主机配置详细教程》这篇文章主要讲的是在CentOS系统上,如何一步步配置Tomcat的虚拟主机,内容很简单,从目录准备到配置文件修改,再到重启和测试,手把手带你搞定... 目录1. 准备虚拟主机的目录和内容创建目录添加测试文件2. 修改 Tomcat 的 server.X

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

2025最新版Python3.13.1安装使用指南(超详细)

《2025最新版Python3.13.1安装使用指南(超详细)》Python编程语言自诞生以来,已经成为全球最受欢迎的编程语言之一,它简单易学易用,以标准库和功能强大且广泛外挂的扩展库,为用户提供包罗... 目录2025最新版python 3.13.1安装使用指南1. 2025年Python语言最新排名2.

Windows环境下安装达梦数据库的完整步骤

《Windows环境下安装达梦数据库的完整步骤》达梦数据库的安装大致分为Windows和Linux版本,本文将以dm8企业版Windows_64位环境为例,为大家介绍一下达梦数据库的具体安装步骤吧... 目录环境介绍1 下载解压安装包2 根据安装手册安装2.1 选择语言 时区2.2 安装向导2.3 接受协议

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

linux环境openssl、openssh升级流程

《linux环境openssl、openssh升级流程》该文章详细介绍了在Ubuntu22.04系统上升级OpenSSL和OpenSSH的方法,首先,升级OpenSSL的步骤包括下载最新版本、安装编译... 目录一.升级openssl1.官网下载最新版openssl2.安装编译环境3.下载后解压安装4.备份