《算法图解》学习笔记(十一):十种经典的算法与数据结构

2024-03-23 07:38

本文主要是介绍《算法图解》学习笔记(十一):十种经典的算法与数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python学习之路 - 从入门到精通到大师

文章目录

    • [python学习之路 - 从入门到精通到大师](https://blog.csdn.net/TeFuirnever/article/details/90017382)
    • 一、树
    • 二、反向索引
    • 三、傅里叶变换
    • 四、并行算法
    • 五、MapReduce
        • 1)分布式算法为何很有用
        • 2)映射函数
        • 3)归并函数
    • 六、布隆过滤器和HyperLogLog
        • 1)布隆过滤器
        • 2)HyperLogLog
    • 七、SHA 算法
        • 1)比较文件
        • 2)检查密码
    • 八、局部敏感的哈希算法
    • 九、Diffie-Hellman 密钥交换
    • 十、线性规划
    • 十一、总结
    • 参考文章

一、树

在二分查找(《算法图解》学习笔记(一):二分查找(附代码))示例中,每当用户登录Facebook时,Facebook都必须在一个庞大的数组中查找,核实其中是否包含指定的用户名。而在这种数组中查找时,最快的方式是二分查找,但问题是每当有新用户注册时,都必须将其用户名插入该数组并重新排序,因为 二分查找仅在数组有序时才管用。如果能将用户名插入到数组的正确位置就好了,这样就无需在插入后再排序。

为此,有人设计了一种名为 二叉查找树(binary search tree) 的数据结构。
在这里插入图片描述
二叉查找树类似于下面这样。
在这里插入图片描述
对于其中的每个节点,左子节点的值都比它小,而右子节点的值都比它大。
在这里插入图片描述
假设你要查找Maggie,为此,首先检查根节点。
在这里插入图片描述
Maggie排在David的后面,因此你往右边找。
在这里插入图片描述
Maggie排在Manning前面,因此你往左边找。
在这里插入图片描述
在这里插入图片描述
终于找到了Maggie!这几乎与二分查找一样!

  • 在二叉查找树中查找节点时,平均运行时间为O(log n),但在最糟的情况下所需时间为O(n);
  • 而在有序数组中查找时,即便是在最糟情况下所需的时间也只有O(log n)。

因此你可能认为有序数组比二叉查找树更佳。然而,二叉查找树的插入和删除操作的速度要快得多。
在这里插入图片描述
二叉查找树也存在一些缺点,例如,不能随机访问,就像不能这么说:“给我第五个元素”。还有在二叉查找树处于平衡状态时,平均访问时间也为O(log n)。

假设二叉查找树像下面这样处于不平衡状态。
在这里插入图片描述
注意,这棵树是向右倾斜的,因此性能不佳。

也有一些处于平衡状态的特殊二叉查找树,如红黑树。
在这里插入图片描述
那在什么情况下使用二叉查找树呢?B树是一种特殊的二叉树,数据库常用它来存储数据。

如果你对数据库或高级数据结构感兴趣,请研究如下数据结构:B树,红黑树,堆,伸展树。

二、反向索引

这里非常简单地说说搜索引擎的工作原理。

假设你有三个网页,内容如下。
在这里插入图片描述
我们根据这些内容创建一个哈希表。(《算法图解》学习笔记(五):哈希表,小名散列表(附代码))
在这里插入图片描述
这个哈希表的键为单词,值为包含指定单词的页面。现在假设有用户搜索 hi,在这种情况下,搜索引擎需要检查哪些页面包含 hi
在这里插入图片描述
搜索引擎发现页面A和B包含 hi,因此将这些页面作为搜索结果呈现给用户。再假设现在用户搜索 there。通过哈希表,你就知道了页面A和C包含它。非常简单,不是吗?这是一种很有用的数据结构:一个哈希表,将单词映射到包含它的页面。这种数据结构被称为 反向索引(inverted index),常用于创建搜索引擎。

如果你对搜索感兴趣,从 反向索引 着手研究是不错的选择。

三、傅里叶变换

在这里插入图片描述
绝妙、优雅且应用广泛的算法少之又少,傅里叶变换 算是一个。

Better Explained是一个杰出的网站,致力于以通俗易懂的语言阐释数学,它就 傅里叶变换 做了一个绝佳的比喻:给它一杯冰沙,傅里叶变换能告诉你,其中包含哪些成分。换言之,给定一首歌曲,傅里叶变换能够将其中的各种频率分离出来。

这种理念虽然简单,应用却极其广泛。例如,如果能够将歌曲分解为不同的频率,就可强化你关心的部分,如强化低音并隐藏高音。傅里叶变换非常适合用于处理信号,可使用它来压缩音乐。为此,首先需要将音频文件分解为音符。傅里叶变换能够准确地指出各个音符对整个歌曲的贡献,让你能够将不重要的音符删除,这就是 MP3格式的工作原理!数字信号并非只有音乐一种类型。JPG也是一种压缩格式,也采用了刚才说的工作原理。傅里叶变换还被用来地震预测和DNA分析。使用傅里叶变换还可创建类似于Shazam这样的 音乐识别软件

傅里叶变换的用途极其广泛,你遇到它的可能性极高!

四、并行算法

在这里插入图片描述
我们身处一个处理器速度越来越快的时代,如果你要提高算法的速度,可等上几个月,届时计算机本身的速度就会更快。但这个时代已接近尾声,因此笔记本电脑和台式机转而采用多核处理器。为提高算法的速度,你需要让它们能够在多个内核中并行地执行!

来看一个简单的例子。在最佳情况下,排序算法的速度大致为O(n log n)。众所周知,对数组进行排序时,除非使用并行算法,否则运行时间不可能为O(n)!对数组进行排序时,快速排序的并行版本所需的时间为O(n)。

并行算法设计起来很难,要确保它们能够正确地工作并实现期望的速度提升也很难。有一点是确定的,那就是 速度的提升并非线性的,因此即便你的笔记本电脑装备了两个而不是一个内核,算法的速度也不可能提高一倍,其中的原因有两个:

  • 并行性管理开销。假设你要对一个包含1000个元素的数组进行排序,如何在两个内核之间分配这项任务呢?如果让每个内核对其中500个元素进行排序,再将两个排好序的数组合并成一个有序数组,那么合并也是需要时间的。

  • 负载均衡。假设你需要完成10个任务,因此你给每个内核都分配5个任务。但分配给内核A的任务都很容易,10秒钟就完成了,而分配给内核B的任务都很难,1分钟才完成。这意味着有那么50秒,内核B在忙死忙活,而内核A却闲得很!你如何均匀地分配工作,让两个内核都一样忙呢?

要改善性能和可扩展性,并行算法可能是不错的选择!

五、MapReduce

在这里插入图片描述
有一种 特殊的并行算法 正越来越流行,它就是 分布式算法。在并行算法只需两到四个内核时,完全可以在笔记本电脑上运行它,但如果需要数百个内核呢?

在这种情况下,可让算法在多台计算机上运行。MapReduce是一种流行的分布式算法,你可通过流行的开源工具Apache Hadoop来使用它。

1)分布式算法为何很有用

假设你有一个数据库表,包含数十亿乃至数万亿行,需要对其执行复杂的SQL查询。在这种情况下,你不能使用MySQL,因为数据表的行数超过数十亿后,它处理起来将很吃力。相反,你需要通过Hadoop来使用MapReduce!

又假设你需要处理一个很长的清单,其中包含100万个职位,而每个职位处理起来需要10秒。如果使用一台计算机来处理,将耗时数月!如果使用100台计算机来处理,可能几天就能完工。

分布式算法非常适合用于在短时间内完成海量工作,其中的MapReduce基于两个简单的理念:映射(map)函数归并(reduce)函数

2)映射函数

映射函数很简单,它接受一个数组,并对其中的每个元素执行同样的处理。例如,下面的映射函数将数组的每个元素翻倍。

>>> arr1 = [1, 2, 3, 4, 5]
>>> arr2 = map(lambda x: 2 * x, arr1)
[2, 4, 6, 8, 10]

在这里插入图片描述
arr2 包含 [2, 4, 6, 8, 10]:将数组 arr1 的每个元素都翻倍!将元素翻倍的速度非常快,但如果要执行的操作需要更长的时间呢?请看下面的伪代码。

>>> arr1 = # A list of URLs
>>> arr2 = map(download_page, arr1)

在这个示例中,你有一个URL清单,需要下载每个URL指向的页面并将这些内容存储在数组 arr2 中。对于每个URL,处理起来都可能需要几秒钟。如果总共有1000个URL,可能耗时几小时!

如果有100台计算机,而 map 能够自动将工作分配给这些计算机去完成就好了。这样就可同时下载100个页面,下载速度将快得多!这就是MapReduce中 映射 部分基于的理念。

3)归并函数

归并函数可能令人迷惑,其理念是将很多项归并为一项。

映射是将一个数组转换为另一个数组。
在这里插入图片描述
而归并是将一个数组转换为一个元素。
在这里插入图片描述
下面是一个示例。

>>> arr1 = [1, 2, 3, 4, 5]
>>> reduce(lambda x,y: x+y, arr1)
15

在这个示例中,你将数组中的所有元素相加:1 + 2 + 3 + 4 + 5 = 15!

MapReduce使用这两个简单概念在多台计算机上执行数据查询。数据集很大,包含数十亿行时,使用MapReduce只需几分钟就可获得查询结果,而传统数据库可能要耗费数小时。

六、布隆过滤器和HyperLogLog

假设你管理着网站 Reddit。每当有人发布链接时,你都要检查它以前是否发布过,因为之前未发布过的故事更有价值。又假设你在Google负责搜集网页,但只想搜集新出现的网页,因此需要判断网页是否搜集过。

在假设你管理着提供网址缩短服务的 bit.ly,要避免将用户重定向到恶意网站。你有一个清单,其中记录了恶意网站的URL。你需要确定要将用户重定向到的URL是否在这个清单中。这些都是同一种类型的问题,涉及庞大的集合。
在这里插入图片描述
给定一个元素,你需要判断它是否包含在这个集合中。为快速做出这种判断,可使用散列表。

例如,Google可能有一个庞大的散列表,其中的键是已搜集的网页。
在这里插入图片描述
要判断是否已搜集adit.io,可在这个散列表中查找它。
在这里插入图片描述
adit.io 是这个散列表中的一个键,这说明已搜集它。散列表的平均查找时间为O(1),即查找时间是固定的,非常好!(《算法图解》学习笔记(五):哈希表,小名散列表(附代码))

只是Google需要建立数万亿个网页的索引,因此这个散列表非常大,需要占用大量的存储空间。Redditbit.ly 也面临着这样的问题。面临海量数据,你需要创造性的解决方案!

1)布隆过滤器

在这里插入图片描述
布隆过滤器提供了解决之道。布隆过滤器是一种概率型数据结构,它提供的答案有可能不对,但很可能是正确的。为判断网页以前是否已搜集,可不使用哈希表,而使用布隆过滤器。使用哈希表时,答案绝对可靠,而使用布隆过滤器时,答案却是很可能是正确的。

  • 可能出现错报的情况,即Google可能指出“这个网站已搜集”,但实际上并没有搜集。
  • 不可能出现漏报的情况,即如果布隆过滤器说“这个网站未搜集”,就肯定未搜集。

布隆过滤器的优点在于占用的存储空间很少。使用哈希表时,必须存储Google搜集过的所有URL,但使用布隆过滤器时不用这样做。布隆过滤器非常适合用于不要求答案绝对准确的情况,前面所有的示例都是这样的。对 bit.ly 而言,这样说完全可行:“我们认为这个网站可能是恶意的,请倍加小心。”

2)HyperLogLog

在这里插入图片描述
HyperLogLog是一种类似于布隆过滤器的算法。如果Google要计算用户执行的不同搜索的数量,或者Amazon要计算当天用户浏览的不同商品的数量,要回答这些问题,需要耗用大量的空间!对Google来说,必须有一个日志,其中包含用户执行的不同搜索。有用户执行搜索时,Google必须判断该搜索是否包含在日志中:如果答案是否定的,就必须将其加入到日志中。即便只记录一天的搜索,这种日志也大得不得了!

HyperLogLog近似地计算集合中不同的元素数,与布隆过滤器一样,它不能给出准确的答案,但也八九不离十,而占用的内存空间却少得多。

面临海量数据且只要求答案八九不离十时,可考虑使用概率型算法!

七、SHA 算法

在这里插入图片描述
还记得第5章介绍的哈希算法吗?(《算法图解》学习笔记(五):哈希表,小名散列表(附代码))我们回顾一下,假设你有一个键,需要将其相关联的值放到数组中。
在这里插入图片描述
你使用哈希函数来确定,应将这个值放在数组的什么地方。
在这里插入图片描述
你将值放在这个地方。
在这里插入图片描述
这样查找时间是固定的。当你想要知道指定键对应的值时,可再次执行哈希函数,它将告诉你这个值存储在什么地方,需要的时间为O(1)。

在这个示例中,你希望哈希函数的结果是均匀分布的。哈希函数接受一个字符串,并返回一个索引号。

1)比较文件

另一种散列函数是 安全散列算法(secure hash algorithm,SHA) 函数。给定一个字符串,SHA返回其散列值。
在这里插入图片描述
这里的术语有点令人迷惑。SHA是一个哈希函数,它生成一个哈希值——一个较短的字符串。用于创建哈希表的哈希函数根据字符串生成数组索引,而SHA根据字符串生成另一个字符串。

对于每个不同的字符串,SHA生成的哈希值都不同。
在这里插入图片描述

SHA 生成的散列值很长,这里为了方面观看就截短了。

你可使用SHA来判断两个文件是否相同,这在比较超大型文件时很有用。

假设你有一个 4 GB的文件,并要检查朋友是否也有这个大型文件。为此,你不用通过电子邮件将这个大型文件发送给朋友,而可计算它们的SHA哈希值,再对结果进行比较。
在这里插入图片描述

2)检查密码

SHA还让你能在不知道原始字符串的情况下对其进行比较。例如,假设Gmail遭到攻击,攻击者窃取了所有的密码!你的密码暴露了吗?

没有,因为Google存储的并非密码,而是密码的SHA哈希值!你输入密码时,Google计算其哈希值,并将结果同其数据库中的哈希值进行比较。(散列就是哈希)
在这里插入图片描述
Google只是比较哈希值,因此不必存储你的密码!SHA被广泛用于计算密码的哈希值。这种哈希算法是单向的。你可根据字符串计算出哈希值。
在这里插入图片描述
但你无法根据哈希值推断出原始字符串。
在这里插入图片描述
这意味着计算攻击者窃取了Gmail的SHA散列值,也无法据此推断出原始密码!你可将密码转换为哈希值,但反过来不行。

SHA实际上是一系列算法:SHA-0、SHA-1、SHA-2和SHA-3。当前,比较安全的密码哈希函数是bcrypt,但没有任何东西是万无一失的。

八、局部敏感的哈希算法

SHA还有一个重要特征,那就是局部不敏感的。假设你有一个字符串,并计算了其哈希值。
在这里插入图片描述
如果你修改其中的一个字符,再计算其哈希值,结果将截然不同!
在这里插入图片描述
这很好,让攻击者无法通过比较哈希值是否类似来破解密码。

有时候,你希望结果相反,即希望哈希函数是局部敏感的。在这种情况下,可使用Simhash。
在这里插入图片描述
如果你对字符串做细微的修改,Simhash生成的哈希值也只存在细微的差别。这让你能够通过比较哈希值来判断两个字符串的相似程度,这很有用!

  • Google使用Simhash来判断网页是否已搜集。
  • 老师可以使用Simhash来判断学生的论文是否是从网上抄的。
  • Scribd允许用户上传文档或图书,以便与人分享,但不希望用户上传有版权的内容!这个网站可使用Simhash来检查上传的内容是否与小说《哈利·波特》类似,如果类似,就自动拒绝。

需要检查两项内容的相似程度时,Simhash很有用。

九、Diffie-Hellman 密钥交换

在这里插入图片描述
这里有必要提一提Diffie-Hellman算法,它以优雅的方式解决了一个古老的问题:如何对消息进行加密,以便只有收件人才能看懂呢?

最简单的方式是设计一种加密算法,如将a转换为1,b转换为2,以此类推。这样,如果我给你发送消息“4,15,7”,你就可将其转换为“d,o,g”。但我们必须就加密算法达成一致,这种方式才可行。我们不能通过电子邮件来协商,因为可能有人拦截电子邮件,获悉加密算法,进而破译消息。即便通过会面来协商,这种加密算法也可能被猜出来——它并不复杂。因此,我们每天都得修改加密算法,但这样我们每天都得会面!

即便我们能够每天修改,像这样简单的加密算法也很容易使用蛮力攻击破解。假设我看到消息“9,6,13,13,16 24,16,19,13,5”,如果使用加密算法a = 1、b = 2等,转换结果将如下。
在这里插入图片描述
结果是一堆乱码。我们来尝试加密算法a = 2、b = 3等。
在这里插入图片描述
结果对了!像这样的简单加密算法很容易破解。在二战期间,德国人使用的加密算法比这复杂得多,但还是被破解了。

Diffie-Hellman算法解决了如下两个问题。

  • 双方无需知道加密算法。他们不必会面协商要使用的加密算法。
  • 要破解加密的消息比登天还难。

Diffie-Hellman使用两个密钥:公钥和私钥。顾名思义,公钥就是公开的,可将其发布到网站上,通过电子邮件发送给朋友,或使用其他任何方式来发布。你不必将它藏着掖着。有人要向你发送消息时,他使用公钥对其进行加密。加密后的消息只有使用私钥才能解密。只要只有你知道私钥,就只有你才能解密消息!

Diffie-Hellman算法及其替代者RSA依然被广泛使用。如果你对加密感兴趣,先着手研究Diffie-Hellman算法是不错的选择:它既优雅又不难理解。

十、线性规划

在这里插入图片描述
线性规划是最酷的算法之一。

线性规划用于在给定约束条件下最大限度地改善指定的指标。例如,假设你所在的公司生产两种产品:衬衫和手提袋。衬衫每件利润2美元,需要消耗1米布料和5粒扣子;手提袋每个利润3美元,需要消耗2米布料和2粒扣子。你有11米布料和20粒扣子,为最大限度地提高利润,该生产多少件衬衫、多少个手提袋呢?

在这个例子中,目标是利润最大化,而约束条件是拥有的原材料数量。

再举一个例子。你是个政客,要尽可能多地获得支持票。你经过研究发现,平均而言,对于每张支持票,在旧金山需要付出1小时的劳动(宣传、研究等)和2美元的开销,而在芝加哥需要付出1.5小时的劳动和1美元的开销。在旧金山和芝加哥,你至少需要分别获得500和300张支持票。你有50天的时间,总预算为1500美元。请问你最多可从这两个地方获得多少支持票?

这里的目标是支持票数最大化,而约束条件是时间和预算。

你可能在想,最优化与线性规划有何关系?所有的图算法都可使用线性规划来实现。线性规划是一个宽泛得多的框架,图问题只是其中的一个子集。但愿你听到这一点后心潮澎湃!

线性规划使用Simplex算法,这个算法很复杂。
在这里插入图片描述
如果你对最优化感兴趣,就研究研究线性规划吧!

十一、总结

本章简要地介绍了10个算法,唯愿这让你知道还有很多地方等待你去探索。

最佳的学习方式是找到感兴趣的主题,然后一头扎进去。到这里《算法图解》学习笔记就结束了,下一本书预计是著名的《problem solving with algorithms and data structure using python》中文版。

参考文章

  • 《算法图解》

这篇关于《算法图解》学习笔记(十一):十种经典的算法与数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837608

相关文章

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖