用BSP优化3D渲染

2024-03-23 06:52
文章标签 优化 3d 渲染 bsp

本文主要是介绍用BSP优化3D渲染,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D渲染引擎设计者面临的最大问题之一是可见性计算:只必须绘制可见的墙壁和物体,并且必须以正确的顺序绘制它们(应该在远处的墙壁前面绘制近墙) 。 更重要的是,对于游戏等应用程序来说,开发能够快速渲染场景的算法非常重要。 因此,现在存在多种解决可见性计算问题的方法。

二进制空间分区 (BSP) 是一种可用于大大加快 3D 渲染中可见性计算速度的技术。 它已被多款著名游戏使用,例如《Doom》和《Quake》。

  • Map — 这是指正在渲染的区域:在游戏中,这是游戏地图或关卡。
  • Viewpoint——我们渲染的视角
  • Field of View — 视野,从视点的位置和角度可见的地图区域

使用 Doom 使用的二维地图示例来解释该系统。 然而,BSP 可以轻松扩展到 3 维(或更多?)——代替 2 维线,可以使用 3 维平面等。

1、预先计算

在渲染地图之前,我们必须对其执行大量计算。 然而,一旦执行这些计算,其结果就可以多次使用。 这是 BSP 的优点之一——一旦执行了计算,就不需要再次执行,除非地图发生更改。 BSP 只允许“静态”地图,或者不移动的地图。 如果地图有任何移动部分,那么它们必须单独渲染。

必须做的是将地图划分为凸多边形。 凸多边形是所有内角都小于或等于180度的多边形。 例如,以下形状是凸多边形:

然而,以下形状不是凸形的:

如果地图被认为是一个非凸多边形,我们可以通过在其上画一条分界线将其分成两个子多边形。 例如,考虑以下地图:

将这个多边形一分为二时,我们创建了两个“子多边形”。 这种划分可以用一个简单的树来表示:

现在可以递归地划分两个子多边形中的每一个。 每个分支都会为树产生一个新的“分支”。 递归一直持续到地图被划分为凸多边形,即树的“叶子”。

出于显而易见的原因,如果可能的话,希望保持树“平衡”:也就是说,保持树两侧的高度大致相等。

2、渲染

使用 BSP 树的渲染也是使用递归算法完成的。 最常见的方法是从根节点(树的顶部)开始并递归地向下工作。 这就是为什么需要保持树平衡:这减少了递归的数量。 递归到大深度可能会显着减慢渲染速度。

可见性排序系统的核心在于渲染函数递归的顺序。 也就是说,给定节点的左子树还是右子树是否先渲染。 对于任何特定节点,都有一条分界线,将其分为两个子节点。 如果这条线延伸到无穷远,我们渲染的视点可以被认为是在“左”或“右”侧。 视点所在的一侧决定首先渲染哪个子节点。

请注意,实际上有两种执行渲染的方式:

  • 从后到前

在从后到前的渲染器中,首先渲染远处的墙壁,并被较近的墙壁遮挡。 这是上图中使用的系统。 从后到前渲染的缺点之一是过度绘制 - 绘制的部分墙壁被较近的墙壁遮挡而看不到。 这是不必要的开销。

  • 从前到后

从前到后渲染器以相反的方式工作:首先渲染较近的墙壁,然后将较远的墙壁剪裁到已绘制的墙壁上。 因为它没有过度绘制,所以几乎所有实用的 BSP 渲染器都使用从前到后的方法。

因此,简单的从后到前渲染器的一些示例伪代码将是:

function render(node)
{if this node is a leaf{draw this node to the screen}else{determine which side of the dividing line the viewpoint isif it is on the left side{render(right subnode)render(left subnode)}else{render(left subnode)render(right subnode)}}
}

bsp 树的主要缺点是整个地图必须是静态的(不可移动)——如果其中一部分移动,则必须重建整个树。 克服这个问题的一种方法是将静态和移动部分分开,并分别渲染它们。

3、BSP 树的其他用途

除了可见性排序之外,BSP 树还有许多其他用途。 其中之一是,以分层方式划分地图(例如这样)允许将地图的大部分排除在渲染过程之外 - 如果所有特定节点都在视点的视野之外,则该节点可以从渲染中丢弃。 这是加速渲染引擎的快速有效的方法。

这棵树还可以用于许多其他效果,例如阴影。

这篇关于用BSP优化3D渲染的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837496

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应