澜舟孟子轻量化预训练模型技术实践 | NLP 前沿实践

2024-03-22 19:20

本文主要是介绍澜舟孟子轻量化预训练模型技术实践 | NLP 前沿实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上周发布的《一文看懂预训练最新进展》中,澜舟科技创始人兼 CEO 周明和澜舟科技大模型技术负责人王宇龙分享了大模型技术发展背景和近期百花齐放的大模型及新应用、新趋势。本文继续为大家深入介绍“大模型轻量化”趋势以及澜舟的 5 个实践路径。

以下内容根据澜舟科技算法研究员华菁云在「澜舟NLP分享会」演讲整理。全文约 4800 字,预计阅读时长 6 分钟。

为什么要训练轻量化模型?

人们普遍认为,在相同网络架构和训练方法下,模型层数增加、模型参数增加,能力就一定增强,实际上增强的幅度越来越小。大家都知道摩尔定律,硬件逐年价格下降 1.5 倍,运算能力提升 1.5 倍,但是实际上模型参数量每年增加至少 7 倍,硬件能力的提升显然赶不上模型规模的增长。

如图 1 右侧所示,训练一个大模型代价是巨大的,GPT-3 训练需要 460 万美金,此外,大模型落地部署的代价也极大,在工业界实际应用中不得不考虑部署的成本。所以在摩尔定律逐渐走向终结的今天,模型轻量化是必须要考虑的。

图 1

轻量化路径

1. 语言学知识增强

使用语言学知识作为显性的知识信号可以使得模型在预训练的过程中获取到更多的先验信息,在同等参数量下,融入更多的语言学知识。 我们使用 SpaCy 对语料进行词性标注(POS)和命名实体识别(NER),将识别的目标标签作为预测目标用于训练,让模型在语言建模的同时,去计算 POS 与 NER 的预测损失与原始语言建模损失相加得到的最终损失。这个方法可以在各数据集上带来一致的提升。

如图 2 下半部分表格,大家可以看到孟子 Mengzi 模型对应的分数的提升还是比较明显的。

图 2

此外,为了建模句子间的关系,我们结合了 ALBERT 提出的句子顺序预测 SOP 任务,发现也能带来明显的性能提升。而类似的下一句预测 NSP 任务在各项中文任务上的提升不太明显(如图 3 表格所示)。

图 3

2. 训练优化技术

传统基于掩码的预训练方法(Mask Language Model, MLM) 首先通过 ennoising 的方法,例如通过 mask 来构建训练样本,然后训练语言模型去还原被破坏的句子。由于通常采用随机的破坏方法,样本预测的难易度不同,模型在 denoising 训练时的梯度更新强度与样本难度之间缺乏一致性,可能会造成训练不稳定的问题。

此外,也会带来一些假负例,即模型会还原出来与原始句子不同,而实际上也合法的句子。模型通常采用交叉熵训练,这类样本则都会被判断为错误预测,导致训练事实上是不准确的。

图4

那么针对以上两个问题,我们探索了一些训练

这篇关于澜舟孟子轻量化预训练模型技术实践 | NLP 前沿实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836029

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。