KMP 算法(Knuth–Morris–Pratt algorithm)的基本思想

2024-03-22 11:10

本文主要是介绍KMP 算法(Knuth–Morris–Pratt algorithm)的基本思想,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KMP 算法(Knuth–Morris–Pratt algorithm)的基本思想

阅读本文之前,您最好能够了解 KMP 算法解决的是什么问题,最好能用暴力方式(Brute Force)解决一下该问题。
KMP 算法主要想解决的是文本搜索的问题: 给定一个模式字符串 p 和一个子串 t, 找出 p 串出现在 t 串中的位置。

术语定义


  • "abc"(引号中的字符串): 代表字符串字面值
  • a…z(单个斜体小写字母): 代表字符串。
  • A…Z(单个大写字母):代表单个字符。
  • prefix(x, n): 字符串 x 的前 n 个字符构成的子串(前缀)。
  • suffix(x, n): 字符串 x 的后 n 个字符构成的子串(后缀)。
  • |a|: 字符串 a 的长度。

如: 字符串 x = "abcdef", 则 prefix( x, 3) = "abc", suffix( x, 3) = "def",| x| = 6。

KMP 算法的基本思想

假设字符串 x = prefix(p, n),且存在 i > 0 使得字符串 y := prefix(x, i) := suffix(x, i),
p, xy 之间的关系如下图:

p,x,y之间的关系

t 串匹配到 p 串的前缀x,并且在 x 串的下一个串匹配失败,如下图:

匹配失败

仔细观察上图可以发现,此次匹配失败后,我们不用按照暴力算法直接将 p 串移动一位,从头开始比较。
而是将 prefix(x, i) 移动到 suffix(x, i) 的位置,继续比较第 |y|+1 位。
这是因为此时已经匹配成功的 p 串和 x 串(即, prefix(t,n)) 相等。
结合下图(移动后的情况),仔细理解上一句话:

下一次匹配的情况

以上,就是 KMP 算法的最核心思想。我们不难发现,i 越大,移动之后匹配成功的字符就越多, 并且只有 i 取得最大值时, 才不会移动过多的位。
因此,KMP 算法找的是使得 prefix(p, i) == suffix(p, i) 最大的 i, 记作 i_max, 此时的 y 串记作 y _max。

容易求得,每次移动的位数是 |x| - | y _max|。
将 prefix(p, 1…|p|) (即 p 串的所有前缀 ) 的 i_max 打成一个表格,就是 KMP 算法所谓的 next 数组。

这篇关于KMP 算法(Knuth–Morris–Pratt algorithm)的基本思想的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835179

相关文章

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou