【C++刷题】优选算法——动态规划第二辑

2024-03-22 10:52

本文主要是介绍【C++刷题】优选算法——动态规划第二辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 按摩师
状态表示:dp[i]: 表示到i位置时的,最长预约时长
状态转移方程:dp[i] = max(dp[0], dp[1], ..., dp[i-2]) + nums[i]
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;else if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);// 1.dp数组vector<int> dp(nums.size());// 2.初始化dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);// 3.状态转移方程for(int i = 2; i < dp.size(); ++i){int max = dp[0];for(int j = 1; j < i - 1; ++j){if(dp[j] > max) max = dp[j];}dp[i] = max + nums[i];}// 4.返回值int max = dp[0];for(int j = 1; j < dp.size(); ++j){if(dp[j] > max) max = dp[j];}return max;
}
状态表示:dp[i]: 表示到i位置时的,最长预约时长细化:f[i]: 表示到i位置时,nums[i]必选,此时的最长预约时长g[i]: 表示到i位置时,nums[i]不选,此时的最长预约时长
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 打家劫舍 II
通过分类讨论,将环形问题,转换为线性问题
状态表示:dp[i]: 表示到i位置时,rob的最大金额细化:f[i]: 表示到i位置时,nums[i]必选,此时rob的最大金额g[i]: 表示到i位置时,nums[i]不选,此时rob的最大金额
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int rob_helper(vector<int>& nums)
{// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
int rob(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);else if(nums.size() == 3) return max(max(nums[0], nums[1]), nums[2]);vector<int> rob_first = vector<int>(nums.begin() + 2, nums.end() - 1);vector<int> rob_not_first = vector<int>(nums.begin() + 1, nums.end());return max(nums[0] + rob_helper(rob_first), rob_helper(rob_not_first));
}
  1. 删除并获得点数
问题转化:将nums中的数统计到一个新数组v中,再在v中做一次“打家劫舍”问题即可
int deleteAndEarn(vector<int>& nums)
{// 0.问题转化int max_size = 0;for(int e : nums){if(e > max_size) max_size = e;}vector<int> v(max_size + 1);for(int e : nums){v[e] += e;}// 1.dp数组vector<int> f(v.size());vector<int> g(v.size());// 2.初始化f[0] = v[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < v.size(); ++i){f[i] = g[i - 1] + v[i];g[i] = std::max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 粉刷房子
状态表示:dp[i][0]: 表示到i位置为止,粉刷成红色的最小花费dp[i][1]: 表示到i位置为止,粉刷成蓝色的最小花费dp[i][2]: 表示到i位置为止,粉刷成绿色的最小花费
状态转移方程:dp[i][0] = min(dp[i-1][1], dp[i-1][2]);dp[i][1] = min(dp[i-1][0], dp[i-1][2]);dp[i][2] = min(dp[i-1][0], dp[i-1][1]);
int minCost(vector<vector<int>>& costs)
{// 1.dp数组vector<vector<int>> dp(costs.size(), vector<int>(3));// 2.初始化dp[0][0] = costs[0][0];dp[0][1] = costs[0][1];dp[0][2] = costs[0][2];// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];}// 4.返回值return min(min(dp.back()[0], dp.back()[1]), dp.back()[2]);
}
  1. 买卖股票的最佳时机含冷冻期
状态表示:dp[i]: 表示第i天结束之后,此时的最大利润dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润dp[i][2]: 表示第i天结束后,处于冷冻期状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(3));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}// 4.返回值return max(dp.back()[1], dp.back()[2]);
}
  1. 买卖股票的最佳时机含手续费
状态表示: dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);
int maxProfit(vector<int>& prices, int fee)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(2));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);}// 4.返回值return dp.back()[1];
}
  1. 买卖股票的最佳时机 III
状态表示:dp[i]: 表示第i天结束之后,此时获得的最大利润f[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“持有”股票状态的最大利润g[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“未持有”股票状态的最大利润
状态转移方程:f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(3, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(3, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < 3; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}
  1. 买卖股票的最佳时机 IV
int maxProfit(int k, vector<int>& prices)
{// 0.细节处理k = min(k, (int)prices.size() / 2);// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < k + 1; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < k + 1; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}

这篇关于【C++刷题】优选算法——动态规划第二辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835161

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二