本文主要是介绍【C++刷题】优选算法——动态规划第二辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
- 按摩师
状态表示:dp[i]: 表示到i位置时的,最长预约时长
状态转移方程:dp[i] = max(dp[0], dp[1], ..., dp[i-2]) + nums[i]
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;else if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);// 1.dp数组vector<int> dp(nums.size());// 2.初始化dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);// 3.状态转移方程for(int i = 2; i < dp.size(); ++i){int max = dp[0];for(int j = 1; j < i - 1; ++j){if(dp[j] > max) max = dp[j];}dp[i] = max + nums[i];}// 4.返回值int max = dp[0];for(int j = 1; j < dp.size(); ++j){if(dp[j] > max) max = dp[j];}return max;
}
状态表示:dp[i]: 表示到i位置时的,最长预约时长细化:f[i]: 表示到i位置时,nums[i]必选,此时的最长预约时长g[i]: 表示到i位置时,nums[i]不选,此时的最长预约时长
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
- 打家劫舍 II
通过分类讨论,将环形问题,转换为线性问题
状态表示:dp[i]: 表示到i位置时,rob的最大金额细化:f[i]: 表示到i位置时,nums[i]必选,此时rob的最大金额g[i]: 表示到i位置时,nums[i]不选,此时rob的最大金额
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int rob_helper(vector<int>& nums)
{// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
int rob(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);else if(nums.size() == 3) return max(max(nums[0], nums[1]), nums[2]);vector<int> rob_first = vector<int>(nums.begin() + 2, nums.end() - 1);vector<int> rob_not_first = vector<int>(nums.begin() + 1, nums.end());return max(nums[0] + rob_helper(rob_first), rob_helper(rob_not_first));
}
- 删除并获得点数
问题转化:将nums中的数统计到一个新数组v中,再在v中做一次“打家劫舍”问题即可
int deleteAndEarn(vector<int>& nums)
{// 0.问题转化int max_size = 0;for(int e : nums){if(e > max_size) max_size = e;}vector<int> v(max_size + 1);for(int e : nums){v[e] += e;}// 1.dp数组vector<int> f(v.size());vector<int> g(v.size());// 2.初始化f[0] = v[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < v.size(); ++i){f[i] = g[i - 1] + v[i];g[i] = std::max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
- 粉刷房子
状态表示:dp[i][0]: 表示到i位置为止,粉刷成红色的最小花费dp[i][1]: 表示到i位置为止,粉刷成蓝色的最小花费dp[i][2]: 表示到i位置为止,粉刷成绿色的最小花费
状态转移方程:dp[i][0] = min(dp[i-1][1], dp[i-1][2]);dp[i][1] = min(dp[i-1][0], dp[i-1][2]);dp[i][2] = min(dp[i-1][0], dp[i-1][1]);
int minCost(vector<vector<int>>& costs)
{// 1.dp数组vector<vector<int>> dp(costs.size(), vector<int>(3));// 2.初始化dp[0][0] = costs[0][0];dp[0][1] = costs[0][1];dp[0][2] = costs[0][2];// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];}// 4.返回值return min(min(dp.back()[0], dp.back()[1]), dp.back()[2]);
}
- 买卖股票的最佳时机含冷冻期
状态表示:dp[i]: 表示第i天结束之后,此时的最大利润dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润dp[i][2]: 表示第i天结束后,处于冷冻期状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(3));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}// 4.返回值return max(dp.back()[1], dp.back()[2]);
}
- 买卖股票的最佳时机含手续费
状态表示: dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);
int maxProfit(vector<int>& prices, int fee)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(2));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);}// 4.返回值return dp.back()[1];
}
- 买卖股票的最佳时机 III
状态表示:dp[i]: 表示第i天结束之后,此时获得的最大利润f[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“持有”股票状态的最大利润g[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“未持有”股票状态的最大利润
状态转移方程:f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(3, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(3, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < 3; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}
- 买卖股票的最佳时机 IV
int maxProfit(int k, vector<int>& prices)
{// 0.细节处理k = min(k, (int)prices.size() / 2);// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < k + 1; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < k + 1; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}
这篇关于【C++刷题】优选算法——动态规划第二辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!