【C++刷题】优选算法——动态规划第二辑

2024-03-22 10:52

本文主要是介绍【C++刷题】优选算法——动态规划第二辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. 按摩师
状态表示:dp[i]: 表示到i位置时的,最长预约时长
状态转移方程:dp[i] = max(dp[0], dp[1], ..., dp[i-2]) + nums[i]
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;else if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);// 1.dp数组vector<int> dp(nums.size());// 2.初始化dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);// 3.状态转移方程for(int i = 2; i < dp.size(); ++i){int max = dp[0];for(int j = 1; j < i - 1; ++j){if(dp[j] > max) max = dp[j];}dp[i] = max + nums[i];}// 4.返回值int max = dp[0];for(int j = 1; j < dp.size(); ++j){if(dp[j] > max) max = dp[j];}return max;
}
状态表示:dp[i]: 表示到i位置时的,最长预约时长细化:f[i]: 表示到i位置时,nums[i]必选,此时的最长预约时长g[i]: 表示到i位置时,nums[i]不选,此时的最长预约时长
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int massage(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 0) return 0;// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 打家劫舍 II
通过分类讨论,将环形问题,转换为线性问题
状态表示:dp[i]: 表示到i位置时,rob的最大金额细化:f[i]: 表示到i位置时,nums[i]必选,此时rob的最大金额g[i]: 表示到i位置时,nums[i]不选,此时rob的最大金额
状态转移方程:f[i] = g[i-1] + nums[i];g[i] = max(f[i-1], g[i-1]);
int rob_helper(vector<int>& nums)
{// 1.dp数组vector<int> f(nums.size());vector<int> g(nums.size());// 2.初始化f[0] = nums[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < nums.size(); ++i){f[i] = g[i - 1] + nums[i];g[i] = max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
int rob(vector<int>& nums)
{// 0.边界情况处理if(nums.size() == 1) return nums[0];else if(nums.size() == 2) return max(nums[0], nums[1]);else if(nums.size() == 3) return max(max(nums[0], nums[1]), nums[2]);vector<int> rob_first = vector<int>(nums.begin() + 2, nums.end() - 1);vector<int> rob_not_first = vector<int>(nums.begin() + 1, nums.end());return max(nums[0] + rob_helper(rob_first), rob_helper(rob_not_first));
}
  1. 删除并获得点数
问题转化:将nums中的数统计到一个新数组v中,再在v中做一次“打家劫舍”问题即可
int deleteAndEarn(vector<int>& nums)
{// 0.问题转化int max_size = 0;for(int e : nums){if(e > max_size) max_size = e;}vector<int> v(max_size + 1);for(int e : nums){v[e] += e;}// 1.dp数组vector<int> f(v.size());vector<int> g(v.size());// 2.初始化f[0] = v[0];g[0] = 0;// 3.状态转移方程for(int i = 1; i < v.size(); ++i){f[i] = g[i - 1] + v[i];g[i] = std::max(f[i - 1], g[i - 1]);}// 4.返回值return max(f.back(), g.back());
}
  1. 粉刷房子
状态表示:dp[i][0]: 表示到i位置为止,粉刷成红色的最小花费dp[i][1]: 表示到i位置为止,粉刷成蓝色的最小花费dp[i][2]: 表示到i位置为止,粉刷成绿色的最小花费
状态转移方程:dp[i][0] = min(dp[i-1][1], dp[i-1][2]);dp[i][1] = min(dp[i-1][0], dp[i-1][2]);dp[i][2] = min(dp[i-1][0], dp[i-1][1]);
int minCost(vector<vector<int>>& costs)
{// 1.dp数组vector<vector<int>> dp(costs.size(), vector<int>(3));// 2.初始化dp[0][0] = costs[0][0];dp[0][1] = costs[0][1];dp[0][2] = costs[0][2];// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + costs[i][0];dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i][1];dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i][2];}// 4.返回值return min(min(dp.back()[0], dp.back()[1]), dp.back()[2]);
}
  1. 买卖股票的最佳时机含冷冻期
状态表示:dp[i]: 表示第i天结束之后,此时的最大利润dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润dp[i][2]: 表示第i天结束后,处于冷冻期状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(3));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;dp[0][2] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][2]);dp[i][2] = dp[i-1][0] + prices[i];}// 4.返回值return max(dp.back()[1], dp.back()[2]);
}
  1. 买卖股票的最佳时机含手续费
状态表示: dp[i][0]: 表示第i天结束后,处于买入状态时的最大利润dp[i][1]: 表示第i天结束后,处于可交易状态时的最大利润
状态转移方程:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);
int maxProfit(vector<int>& prices, int fee)
{// 1.dp数组vector<vector<int>> dp(prices.size(), vector<int>(2));// 2.初始化dp[0][0] = -prices[0];dp[0][1] = 0;// 3.状态转移方程for(int i = 1; i < dp.size(); ++i){dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);}// 4.返回值return dp.back()[1];
}
  1. 买卖股票的最佳时机 III
状态表示:dp[i]: 表示第i天结束之后,此时获得的最大利润f[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“持有”股票状态的最大利润g[i][j]: 表示第i天结束之后,此时已完成j次交易,且处于“未持有”股票状态的最大利润
状态转移方程:f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);
int maxProfit(vector<int>& prices)
{// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(3, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(3, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < 3; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < 3; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}
  1. 买卖股票的最佳时机 IV
int maxProfit(int k, vector<int>& prices)
{// 0.细节处理k = min(k, (int)prices.size() / 2);// 1.dp数组vector<vector<int>> f(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));vector<vector<int>> g(prices.size(), vector<int>(k + 1, -0x3f3f3f3f));// 2.初始化f[0][0] = -prices[0];g[0][0] = 0;// 3.状态转移方程for(int i = 1; i < prices.size(); ++i){for(int j = 0; j < k + 1; ++j){f[i][j] = max(f[i-1][j], g[i-1][j] - prices[i]);if(j - 1 >= 0)g[i][j] = max(g[i-1][j], f[i-1][j-1] + prices[i]);elseg[i][j] = g[i-1][j];}}// 4.返回值int ret = g.back()[0];for(int i = 1; i < k + 1; ++i){if(g.back()[i] > ret) ret = g.back()[i];}return ret;
}

这篇关于【C++刷题】优选算法——动态规划第二辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835161

相关文章

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在