运动想象 (MI) 迁移学习系列 (14) : EEGNet-Fine tuning

2024-03-22 10:12

本文主要是介绍运动想象 (MI) 迁移学习系列 (14) : EEGNet-Fine tuning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

运动想象迁移学习系列:EEGNet-Fine tuning

  • 0. 引言
  • 1. 主要贡献
  • 2. 提出的方法
    • 2.1 EEGNet框架
    • 2.2 微调
  • 3. 实验结果
    • 3.1 各模型整体分类结果
    • 3.2 算法复杂度比较
    • 3.3 不同微调方法比较
  • 4. 总结
  • 欢迎来稿

论文地址:https://www.nature.com/articles/s41598-021-99114-1#citeas
论文题目:A transfer learning framework based on motor imagery rehabilitation for stroke
论文代码:无

0. 引言

深度学习网络已成功应用于传递函数,使模型可以从源域适应到不同的目标域。本研究利用多个卷积神经网络对脑卒中患者的脑电图(EEG)进行解码,设计有效的运动意象(MI)脑机接口(BCI)系统。这项研究引入了 “微调” 来传输模型参数并减少训练时间。所提出的框架的性能是通过模型的两类MI识别能力来评估的。

总得来说:这是一篇较老的文章,进一步说明了EEGNet模型的普适性与优越性(效果好且稳定)。

1. 主要贡献

  1. 比较多个模型的实验结果,可以推断EEGNet是所有框架中迁移学习的最佳网络模型
  2. 实验表明,迁移学习可以有效提高脑机接口系统对脑卒中患者康复的性能,也证明了所提框架的有效性和鲁棒性。

2. 提出的方法

2.1 EEGNet框架

在这里插入图片描述

2.2 微调

迁移学习的有效性取决于许多因素。其中,最重要的因素是原始数据与目标数据的相似性。相似度越高,“微调”效果越好。EEGNet的前几层获得的特征是基本的常规特征(例如,从前几层中提取特定的频率空间滤波器)。后几层提取特定特征(例如,模型可以分别汇总每个特征图的内核,并找到特征图的最佳组合)。

为了避免过度拟合,所提出的神经网络的 “微调” 分为以下几个步骤:

  1. 修改最后一层的输出参数。所提出的方法是冻结或重新训练前几层的参数,然后修改softmax层的类别参数。
  2. 调整模型的配置参数,适当降低学习率、步长和纪元。模型的学习率相对较低,因为有效的模型权重用于“微调”。如果学习率太高,模型可以快速更新并破坏原有的良好权重信息。在“微调”后,本研究选择打开所有图层并更新步长参数。EEGNet模型之前是在大规模数据集上进行的,无形中扩展了训练后的脑电数据,其处理性能对数据集非常有利。因此,“微调”可以改进模型,在相对较少的时期后获得更好的结果。
  3. 开始训练并加载预训练模型的参数。

3. 实验结果

3.1 各模型整体分类结果

在这里插入图片描述
模型参数:
在这里插入图片描述

3.2 算法复杂度比较

在这里插入图片描述

3.3 不同微调方法比较

在EEGNet模型上执行了三种处理方法。
第一种方法随机初始化整个网络的权重,然后放入一个新的训练数据集进行重新训练。(处理后的模型称为 EEGNet_0)。
第二种方法是在预训练模型中冻结块 1 的权重,并重新训练以下层的其余部分,以便获得新的权重(处理后的模型称为 EEGNet_1)。
第三种方法与第二种方法类似,只是冻结了块 1 和块 2 的层权重,其余相同(处理后的模型称为 EEGNet_2)。
在这里插入图片描述

4. 总结

到此,使用 EEGNet-Fine tuning 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

欢迎来稿

欢迎投稿合作,投稿请遵循科学严谨、内容清晰明了的原则!!!! 有意者可以后台私信!!

这篇关于运动想象 (MI) 迁移学习系列 (14) : EEGNet-Fine tuning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835098

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言