【理解机器学习算法】之Clustering算法(DBSCAN)

2024-03-22 07:12

本文主要是介绍【理解机器学习算法】之Clustering算法(DBSCAN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DBSCAN(基于密度的空间聚类应用噪声)是数据挖掘和机器学习中一个流行的聚类算法。与K-Means这样的划分方法不同,DBSCAN特别擅长于识别数据集中各种形状和大小的聚类,包括存在噪声和离群点的情况。

以下是DBSCAN工作原理的概述:

1. 核心概念:
   - Epsilon (ε):距离参数,指定点周围邻域的半径。
   - 最小点数 (MinPts):形成密集区域所需的最小点数,这将被视为一个聚类。

2. 过程:
   - 算法从数据集中随机选择一个点开始。然后,它识别所有在ε距离内的点,形成一个邻域。
   - 如果一个点的ε-邻域包含至少MinPts,这个点被标记为**核心点**。如果不是,但它位于一个核心点的ε-邻域内,它被标记为**边界点**。否则,它被认为是**噪声**。
   - 接下来,对于每个核心点,如果它尚未被分配到一个聚类中,就创建一个新的聚类。然后,所有在其ε-邻域内的点都被添加到这个聚类中。这一步骤被递归地应用于新形成聚类中的所有点。
   - 这个过程重复进行,直到所有点要么被分配到一个聚类中,要么被标记为噪声。

3. 优点:
   - 形状和大小的灵活性:DBSCAN可以找到各种形状和大小的聚类,与假设聚类是球形的K-Means不同。
   - 处理噪声:它能有效地识别和分离噪声或离群点。
   - 最小输入参数:只需要两个参数(ε和MinPts),尽管选择它们的值有时可能是个挑战。

4. 缺点:
   - 参数敏感性:DBSCAN的结果对于ε和MinPts的选择非常敏感。这些参数的不当选择可能导致过度聚类或欠聚类。
   - 高维数据:DBSCAN在处理高维数据时可能会遇到困难,因为维度的诅咒影响了距离度量。

DBSCAN因其在处理复杂数据结构和噪声方面的鲁棒性而被广泛应用于各种应用中,包括异常检测、地理空间数据分析和生物信息学。

要在Python中实现DBSCAN聚类算法,可以使用scikit-learn库中的sklearn.cluster模块中的DBSCAN类。以下是一个示例代码片段,演示了如何在样本数据集上使用DBSCAN。

from sklearn.cluster import DBSCAN
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成一个样本数据集
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)# 应用DBSCAN
# eps:两个样本被认为是邻居的最大距离。
# min_samples:一个点被认为是核心点的邻域中的样本数量。
dbscan = DBSCAN(eps=0.3, min_samples=10).fit(X)# 获取聚类标签
labels = dbscan.labels_# 标签中的聚类数量,如果存在噪声则忽略。
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)# 绘制聚类
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.title(f'估计的聚类数量:{n_clusters_}')
plt.show()

这段代码执行以下操作:

  1. 使用make_blobs生成了一个包含300个样本、分为4个中心的样本数据集。
  2. 使用eps值为0.3和min_samples为10的DBSCAN算法应用于这个数据集。这些参数可能需要根据您的具体数据集进行调整,以获得最佳的聚类结果。
  3. 提取聚类标签并计算聚类数量。
  4. 使用Matplotlib绘制聚类,每个聚类用不同颜色表示。

记住,选择正确的epsmin_samples值对于DBSCAN在数据集上的成功至关重要。可能需要实验这些参数,以找到适合特定情况的最佳值。

这篇关于【理解机器学习算法】之Clustering算法(DBSCAN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834799

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的