机器学习和深度学习在气象中的应用(台风预报只能订正、风速预报订正、LSTM 方法预测 ENSO)

本文主要是介绍机器学习和深度学习在气象中的应用(台风预报只能订正、风速预报订正、LSTM 方法预测 ENSO),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

查看原文>>>Python人工智能在气象中的实践技术应用

目录

专题一、Python 和科学计算基础

专题二、机器学习和深度学习基础理论和实操

2.1 机器学习和深度学习基础理论

2.2 sklearn 和pytorch 库

专题三 、气象领域中的机器学习应用实例

3.1 GFS 数值模式的风速预报订正

3.2 台风预报数据智能订正

3.3 机器学习预测风电场的风功率

专题四、气象领域中的深度学习应用实例

其它大气相关推荐


       Python 是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得 Python 在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来 Python 将成为的主流编程语言之一。
人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python 也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python 是进行机器学习和深度学习工作的首选。

【内容简述】:

专题一、Python 和科学计算基础

1.1 Python 入门和安装
1.1.1 Python 背景及其在气象中的应用
1.1.2 Anaconda 解释和安装以及 Jupyter 配置1.1.3 Python 基础语法

1.2 科学数据处理基础库

1.2.1 Numpy 库1.2.2 Pandas 库
1.2.3 Scipy 库
1.2.4 Matplotlib 和 Cartopy 库
1.2.5 常用数据格式的 IO

掌握基于 Anaconda 配置 python 环境,以及使用 Jupyterlab 开发和调试代码。在了解了 python 的基础语法后,学习常用的科学计算和可视化库,如 Numpy、Pandas 和 Matplotlib 等。打好基础,机器学习数据预处理和结果展示将手到擒来。

专题二、机器学习和深度学习基础理论和实操

2.1 机器学习和深度学习基础理论

2.1.1 机器学习基本理论
基础学习的基本知识,如误差反向传播、梯度下降法,以及机器学习的整个常规流程。
2.1.2 深度学习基本理论
深度学习基本理论,如卷积神经网络 CNN、循环神经网络 RNN 和生成式对抗网络。
2.1.3 机器学习与深度学习在气象中的应用
AI 在气象模式订正、短临预报、气候预测等场景的应用,以及深度学习降尺度和 PINN 内嵌物理神经网络介绍。

2.2 sklearn 和pytorch 

2.2.1 sklearn 介绍、常用功能和机器学习方法
学习经典机器学习库 sklearn 的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。
2.2.2 pytorch 介绍、搭建 模型
学习目前流行的深度学习框架 pytorch,了解张量 tensor、自动求导、梯度提升等,以 BP 神经网络学习 sin 函数为例,掌握如何搭建单层和多层神经网络, 以及如何使用 GPU 进行模型运算。

专题三 、气象领域中的机器学习应用实例

3.1 GFS 数值模式的风速预报订正

3.1.1 随机森林挑选重要特征
3.1.2 K 近邻和决策树模型订正风速
3.1.3 梯度提升决策树 GBDT 订正风速3.1.4 模型评估与对比

3.2 台风预报数据智能订正

3.2.1 CMA 台风预报数据集介绍以及预处理
3.2.2 随机森林模型订正台风预报
3.2.3 XGBoost 模型订正台风预报
3.2.4 台风“烟花”预报效果检验

3.3 机器学习预测风电场的风功率

3.3.1 lightGBM 模型预测风功率
3.3.2 调参利器—网格搜索 GridSearch 于 K 折验证

本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging 和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个学习个例,并串讲一些机器学习常用技巧,将理论与实践结合。

专题四、气象领域中的深度学习应用实例

4.1 深度学习预测浅水方程模式
4.1.1 浅水模型介绍和数据获取
4.1.2 传统神经网络 ANN 学习浅水方程
4.1.3 物理约束网络 PINN 学习浅水方程

4.2 LSTM 方法预测 ENSO
4.2.1 ENSO 简介及数据介绍
4.2.2 LSTM 方法原理介绍
4.2.3 LSTM 方法预测气象序列数据

4.3 深度学习—卷积网络
4.3.1卷积神经网络介绍
4.3.2 Unet 进行雷达回波的预测

本专题,在学习使用 ANN 预测浅水方程的基础上,进一步掌握如何使用 PINN 方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,学习经典的时序预测方法 LSTM,以及空间卷积算法 UNET。

其它大气相关推荐

气象数据分析:基于CALMET诊断模型的高时空分辨率精细化风场模拟

WRF DA资料同化系统理论、运行与与变分、混合同化新方法技术应用

基于MATLAB野外观测站生态气象数据处理分析实践应用

全套区域高精度地学模拟-WRF气象建模、多案例应用与精美制图

R语言在气象、水文中数据处理及结果分析、绘图实践技术应用

WRF-UCM高精度城市化气象动力模拟技术与案例实践应用

Python语言在地球科学领域中的实践技术应用

这篇关于机器学习和深度学习在气象中的应用(台风预报只能订正、风速预报订正、LSTM 方法预测 ENSO)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834394

相关文章

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域