本文主要是介绍【Docker】Airflow Worker 容器部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Airflow Worker环境标准软件基于Bitnami airflow-worker 构建。当前版本为2.4.58
你可以通过轻云UC部署工具直接安装部署,也可以手动按如下文档操作,该项目已经全面开源,可以从如下环境获取
配置文件地址: https://gitee.com/qingplus/qingcloud-platform
qinghub自动安装部署配置库
What is Apache Airflow Worker?
Apache Airflow Worker是一种以有向无环图 (DAG) 形式表达和执行工作流程的工具。Airflow Worker 监听并处理包含工作流任务的队列。
快速启动
docker run --name airflow-worker bitnami/airflow-worker:latest
您可以在环境变量部分找到默认凭据和可用的配置选项。
先决条件
要运行此应用程序,您需要Docker Engine >= 1.10.0。建议使用Docker Compose1.6.0版本或更高版本。
如何使用
Airflow Worker 是使用CeleryExecutor. 因此,您将需要其余的 Airflow 组件才能使该图像正常工作。您将需要一个Airflow Web 服务器、一个Airflow Scheduler、一个PostgreSQL 数据库和一个Redis® 服务器。
使用 Docker 命令行
-
创建网络
docker network create airflow-tier
-
创建用于 PostgreSQL 持久化的卷并创建 PostgreSQL 容器
docker volume create --name postgresql_data docker run -d --name postgresql \-e POSTGRESQL_USERNAME=bn_airflow \-e POSTGRESQL_PASSWORD=bitnami1 \-e POSTGRESQL_DATABASE=bitnami_airflow \--net airflow-tier \--volume postgresql_data:/bitnami/postgresql \bitnami/postgresql:latest
-
创建 Redis® 持久性卷并创建 Redis® 容器
docker volume create --name redis_data docker run -d --name redis \-e ALLOW_EMPTY_PASSWORD=yes \--net airflow-tier \--volume redis_data:/bitnami \bitnami/redis:latest
-
启动 Apache Airflow Worker Web 容器
docker run -d --name airflow -p 8080:8080 \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_LOAD_EXAMPLES=yes \-e AIRFLOW_PASSWORD=bitnami123 \-e AIRFLOW_USERNAME=user \-e AIRFLOW_EMAIL=user@example.com \--net airflow-tier \bitnami/airflow:latest
-
启动 Apache Airflow Worker 调度程序容器
docker run -d --name airflow-scheduler \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_LOAD_EXAMPLES=yes \--net airflow-tier \bitnami/airflow-scheduler:latest
-
启动 Apache Airflow Worker 工作容器
docker run -d --name airflow-worker \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_QUEUE=new_queue \--net airflow-tier \bitnami/airflow-worker:latest
访问 : http://your-ip:8080
Persisting your application
Bitnami Airflow 容器依赖 PostgreSQL 数据库和 Redis 来保存数据。这意味着 Airflow 不会保留任何东西。为了避免数据丢失,您应该安装卷以持久保存PostgreSQL 数据和Redis® 数据
上面的示例定义了 docker 卷postgresql_data,即 、 和redis_data。只要不删除这些卷,Airflow 应用程序状态就会持续存在。
为了避免无意中删除这些卷,您可以将主机目录安装为数据卷。或者,您可以使用卷插件来托管卷数据。
使用 Docker Compose 将主机目录挂载为数据卷
以下docker-compose.yml模板演示了如何使用主机目录作为数据卷。
version: '2'
services:postgresql:image: 'bitnami/postgresql:latest'environment:- POSTGRESQL_DATABASE=bitnami_airflow- POSTGRESQL_USERNAME=bn_airflow- POSTGRESQL_PASSWORD=bitnami1volumes:- /path/to/postgresql-persistence:/bitnamiredis:image: 'bitnami/redis:latest'environment:- ALLOW_EMPTY_PASSWORD=yesvolumes:- /path/to/redis-persistence:/bitnamiairflow-worker:image: bitnami/airflow-worker:latestenvironment:- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=- AIRFLOW_EXECUTOR=CeleryExecutor- AIRFLOW_DATABASE_NAME=bitnami_airflow- AIRFLOW_DATABASE_USERNAME=bn_airflow- AIRFLOW_DATABASE_PASSWORD=bitnami1- AIRFLOW_LOAD_EXAMPLES=yesairflow-scheduler:image: bitnami/airflow-scheduler:latestenvironment:- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=- AIRFLOW_EXECUTOR=CeleryExecutor- AIRFLOW_DATABASE_NAME=bitnami_airflow- AIRFLOW_DATABASE_USERNAME=bn_airflow- AIRFLOW_DATABASE_PASSWORD=bitnami1- AIRFLOW_LOAD_EXAMPLES=yesairflow:image: bitnami/airflow:latestenvironment:- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=- AIRFLOW_EXECUTOR=CeleryExecutor- AIRFLOW_DATABASE_NAME=bitnami_airflow- AIRFLOW_DATABASE_USERNAME=bn_airflow- AIRFLOW_DATABASE_PASSWORD=bitnami1- AIRFLOW_PASSWORD=bitnami123- AIRFLOW_USERNAME=user- AIRFLOW_EMAIL=user@example.comports:- '8080:8080'
使用 Docker 命令行将主机目录挂载为数据卷
-
创建网络(如果不存在)
docker network create airflow-tier
-
使用主机卷创建 PostgreSQL 容器
docker run -d --name postgresql \-e POSTGRESQL_USERNAME=bn_airflow \-e POSTGRESQL_PASSWORD=bitnami1 \-e POSTGRESQL_DATABASE=bitnami_airflow \--net airflow-tier \--volume /path/to/postgresql-persistence:/bitnami \bitnami/postgresql:latest
-
使用主机卷创建 Redis® 容器
docker run -d --name redis \-e ALLOW_EMPTY_PASSWORD=yes \--net airflow-tier \--volume /path/to/redis-persistence:/bitnami \bitnami/redis:latest
-
创建Airflow容器
docker run -d --name airflow -p 8080:8080 \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_LOAD_EXAMPLES=yes \-e AIRFLOW_PASSWORD=bitnami123 \-e AIRFLOW_USERNAME=user \-e AIRFLOW_EMAIL=user@example.com \--net airflow-tier \bitnami/airflow:latest
-
创建 Airflow Scheduler 容器
docker run -d --name airflow-scheduler \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_LOAD_EXAMPLES=yes \--net airflow-tier \bitnami/airflow-scheduler:latest
-
创建 Airflow Worker 容器
docker run -d --name airflow-worker \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \--net airflow-tier \bitnami/airflow-worker:latest
配置
安装额外的 python 模块
该容器支持在启动时安装额外的 python 模块。为此,您可以requirements.txt根据您的特定需求在路径下挂载一个文件/bitnami/python/requirements.txt。
环境变量
可定制的环境变量
Name | Description | Default Value |
---|---|---|
AIRFLOW_EXECUTOR | Airflow executor. | SequentialExecutor |
AIRFLOW_EXECUTOR | Airflow executor. | CeleryExecutor |
AIRFLOW_FORCE_OVERWRITE_CONF_FILE | Force the airflow.cfg config file generation. | no |
AIRFLOW_WEBSERVER_HOST | Airflow webserver host | 127.0.0.1 |
AIRFLOW_WEBSERVER_PORT_NUMBER | Airflow webserver port. | 8080 |
AIRFLOW_HOSTNAME_CALLABLE | Method to obtain the hostname. | socket.gethostname |
AIRFLOW_DATABASE_HOST | Hostname for PostgreSQL server. | postgresql |
AIRFLOW_DATABASE_HOST | Hostname for PostgreSQL server. | 127.0.0.1 |
AIRFLOW_DATABASE_PORT_NUMBER | Port used by PostgreSQL server. | 5432 |
AIRFLOW_DATABASE_NAME | Database name that Airflow will use to connect with the database. | bitnami_airflow |
AIRFLOW_DATABASE_USERNAME | Database user that Airflow will use to connect with the database. | bn_airflow |
AIRFLOW_DATABASE_USE_SSL | Set to yes if the database is using SSL. | no |
AIRFLOW_REDIS_USE_SSL | Set to yes if Redis® uses SSL. | no |
REDIS_HOST | Hostname for Redis® server. | redis |
REDIS_HOST | Hostname for Redis® server. | 127.0.0.1 |
REDIS_PORT_NUMBER | Port used by Redis® server. | 6379 |
REDIS_DATABASE | Name of the Redis® database. | 1 |
只读环境变量
Name | Description | Value |
---|---|---|
AIRFLOW_BASE_DIR | Airflow installation directory. | ${BITNAMI_ROOT_DIR}/airflow |
AIRFLOW_HOME | Airflow home directory. | ${AIRFLOW_BASE_DIR} |
AIRFLOW_BIN_DIR | Airflow directory for binary executables. | ${AIRFLOW_BASE_DIR}/venv/bin |
AIRFLOW_LOGS_DIR | Airflow logs directory. | ${AIRFLOW_BASE_DIR}/logs |
AIRFLOW_LOG_FILE | Airflow logs directory. | ${AIRFLOW_LOGS_DIR}/airflow-worker.log |
AIRFLOW_CONF_FILE | Airflow configuration file. | ${AIRFLOW_BASE_DIR}/airflow.cfg |
AIRFLOW_TMP_DIR | Airflow directory temporary files. | ${AIRFLOW_BASE_DIR}/tmp |
AIRFLOW_PID_FILE | Path to the Airflow PID file. | ${AIRFLOW_TMP_DIR}/airflow-worker.pid |
AIRFLOW_DAGS_DIR | Airflow data to be persisted. | ${AIRFLOW_BASE_DIR}/dags |
AIRFLOW_DAEMON_USER | Airflow system user. | airflow |
AIRFLOW_DAEMON_GROUP | Airflow system group. | airflow |
除了前面的环境变量之外,配置文件中的所有参数都可以使用以下格式的环境变量覆盖:AIRFLOW__{SECTION}__{KEY}. 注意双下划线。
使用 Docker Compose 指定环境变量
version: '2'services:airflow:image: bitnami/airflow:latestenvironment:- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=- AIRFLOW_EXECUTOR=CeleryExecutor- AIRFLOW_DATABASE_NAME=bitnami_airflow- AIRFLOW_DATABASE_USERNAME=bn_airflow- AIRFLOW_DATABASE_PASSWORD=bitnami1- AIRFLOW_PASSWORD=bitnami123- AIRFLOW_USERNAME=user- AIRFLOW_EMAIL=user@example.com
在 Docker 命令行上指定环境变量
docker run -d --name airflow -p 8080:8080 \-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \-e AIRFLOW_EXECUTOR=CeleryExecutor \-e AIRFLOW_DATABASE_NAME=bitnami_airflow \-e AIRFLOW_DATABASE_USERNAME=bn_airflow \-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \-e AIRFLOW_PASSWORD=bitnami123 \-e AIRFLOW_USERNAME=user \-e AIRFLOW_EMAIL=user@example.com \bitnami/airflow:latest
这篇关于【Docker】Airflow Worker 容器部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!