本文主要是介绍Biome-BGC生态系统模型与Python融合技术教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
原文链接:Biome-BGC生态系统模型与Python融合技术教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247598169&idx=8&sn=51413b9bfd565e93bbd962a7ef3fa226&chksm=fa8201becdf588a8fd121c91f8ff742ba3c2454da30c45c0f75b94e9cc5342be3a55e8cbf290&token=1444690340&lang=zh_CN#rd
第一模式
Biome-BGC
第二基础
Linux应用
实现批量创建文件、删除文件及文件夹
并行化执行程序
CDO工具应用
使用cdo工具对netCDF文件进行合并
筛选时间和变量,裁剪为小区域
Python应用
Python的循环语句,逻辑语句,
创建Numpy数组,并统计计算;
使用Matplotlib制作散点图、等值线图;
利用零散数据Pandas创建数,制作时间
利用Xarray读取netCDF文件,写入netCDF文件;实现插值工作
第三数据处理
在linux 上综合使用cdo和xarray数据制备所需数据。
1静态数据制备:
地形数据:GTOPO30S 1km
土地利用数据:GLCC 1km
土壤数据:FAO
GPP数据:MODIS数据
2驱动数据制备:
CN05.1数据处理
CMFD数据处理
3生态数据
MODIS GPP
第四单点的模拟
1前处理
从空间格点数据(netCDF格式)插值到站点
配置Biome-BGC运行文件
制备用于驱动Biome-BGC的气象数据
2运行BGC模型
3调参
以MODIS的GPP产品为观测值,使用Python库并行化调整Biome-BGC模型的参数
调整生长季开始和结束
4后处理
读取Biome-BGC的ascii文件和二进制文件
结果统计计算
结果可视化
第五区域模拟-1
区域模拟是将区域上每个格点分别进行计算进行的。在本节案例中,将以一个较小的省份进行高分辨率模拟和在中国进行粗分辨率模拟。模拟过程中涉及以下步骤:
静态地理数据准备
气象驱动数据制备
分配数据
并行运行
合并单点结果为空间数据
第六长时间序列模拟案例
使用ERA5作为观测数据的降尺度后的CMIP6未来气候变化降尺度数据。
l对气象数据降尺度,获得气温、湿度、降水和向下短波辐射。
土壤数据、植被数据库查询
准备气象数据和静态数据
后处理模拟结果数据
第七分析
在单点和空间模拟数据的基础上,进行以下分析:
敏感性分析:
使用敏感性分析方法(SALib库),分析主要模拟参数对GPP的影响
归因分析:
使用通径分析方法(semopy库),结合气象要素,分析对GPP和ET的影响过程
需要硬件基础要求
CPU:8核心16线程及以上(空间模拟需要计算资源)
内存:16G及以上
硬盘:计算机本地硬盘100GB及以上(虚拟机+数据的存储)
这篇关于Biome-BGC生态系统模型与Python融合技术教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!