c#使用onnxruntime调用yolo模型导出的onnx模型分割图片

本文主要是介绍c#使用onnxruntime调用yolo模型导出的onnx模型分割图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.今天写下c#中怎么使用yolo模型系列导出的onnx分割图片
2.yolo训练好后,把模型导出为onnx模式。
3.导出模型为onnx模式后,在window中要引用,可以使用 Microsoft.ML.OnnxRuntime库
4.window系统要求win10或者更高,vs用vs2022或更高,.net使用的框架要在.net4.8或更高,才支持使用Microsoft.ML.OnnxRuntime库,。
5.下载 Microsoft.ML.OnnxRuntime。可以在vs2022的包管理器收索下载。
b站视频地址
添加链接描述
基本核心代码:

 if (_onnx_model_is_exit){_object_list.Clear();_break_off = false;#region 获取输入输出的名称var input_datas_ = _session.InputMetadata;var input_names_ = _session.InputNames;var out_datas_ = _session.OutputMetadata;var out_names_ = _session.OutputNames;#endregion#region 创建输入数据PixelFormat p_f_ = _image.PixelFormat;MemoryStream ms = new MemoryStream();_image.Save(ms, System.Drawing.Imaging.ImageFormat.Bmp);byte[] bytes = ms.GetBuffer();  //byte[]   bytes=   ms.ToArray(); 这两句都可以ms.Close();int leng_ = bytes.GetLength(0);//float[] input_data_ = { 1, 2, 3, 4 };long[] input_shape_ = { 1, 3, 640, 640 };float[] input_data_ = new float[leng_];for (int i = 0; i < leng_; i++){input_data_[i] = ((float)bytes[i]) / 255;//初拟255归一化}var input_ort_value_ = OrtValue.CreateTensorValueFromMemory(input_data_, input_shape_);var inputs1_ = new Dictionary<string, OrtValue> { { "images", input_ort_value_ } };#endregion#region  创建推理获取结果//创建创建运行的要求var run_options_ = new RunOptions();//推理IDisposableReadOnlyCollection<OrtValue> results_ = _session.Run(run_options_, inputs1_, out_names_);#endregion#region  获取输出结果var output0_type_and_shape_ = results_[0].GetTensorTypeAndShape();var output1_type_and_shape_ = results_[1].GetTensorTypeAndShape();var out_put0_ = results_[0].GetTensorDataAsSpan<float>();var out_put1_ = results_[1].GetTensorDataAsSpan<float>();#endregion#region 转成矩阵float[,] out_put0_float_ = new float[116, 8400];float[,,] out_put1_float_ = new float[32, 160, 160];//第一个out_put0转成矩阵int out_put0_index_ = 0;for (int row_ = 0; row_ < 116; row_++){for (int column_ = 0; column_ < 8400; column_++){out_put0_float_[row_, column_] = out_put0_[out_put0_index_];out_put0_index_++;}}//第二个out_put1转成矩阵int out_put1_index_ = 0;for (int channel_ = 0; channel_ < 32; channel_++){for (int row_ = 0; row_ < 160; row_++){for (int column_ = 0; column_ < 160; column_++){out_put1_float_[channel_, row_, column_] = out_put1_[out_put1_index_];out_put1_index_++;}}}//out_put0_转置处理float[,] out_put0_float_transpose_ = new float[8400, 116];for (int row_ = 0; row_ < 116; row_++){for (int column_ = 0; column_ < 8400; column_++){out_put0_float_transpose_[column_, row_] = out_put0_float_[row_, column_];}}//out_put1_转置处理float[,] out_put1_float_transpose_ = new float[32, 160 * 160];for (int channel_ = 0; channel_ < 32; channel_++){int out_put1_float_transpose_column_ = 0;for (int row_ = 0; row_ < 160; row_++){for (int column_ = 0; column_ < 160; column_++){out_put1_float_transpose_[channel_, out_put1_float_transpose_column_] = out_put1_float_[channel_, row_, column_];out_put1_float_transpose_column_++;}}}#endregionList<ObjectStruct> object_temp_list_ = new List<ObjectStruct>();#region  提取结果  第一个矩阵out_put0结果/********** * 第一个矩阵out_put0结果 0-4 x_center,y_center,width,height of bounding box* * 第一个矩阵out_put0结果 4-84 object class probabilities for all 80 classes, that this yolov8 model can detect* * 第一个矩阵out_put0结果 84-116 need muplty out_put1 it represent mask.* * ************/for (int row_ = 0; row_ < 8400 && _break_off == false; row_++)//循环每一个对象{//获取最大分数float prob_ = out_put0_float_transpose_[row_, 4];float class_id_ = 0;for (int column_ = 4; column_ < 84; column_++)//检测最大分数{if (prob_ < out_put0_float_transpose_[row_, column_]){prob_ = out_put0_float_transpose_[row_, column_];class_id_ = column_ - 4;}}if (prob_ > _prob_min){ObjectStruct ob_ = new ObjectStruct();ob_._prob = prob_;ob_._class_id = class_id_;ob_._class_label = _yolo_classes[(int)class_id_];ob_._boxe_center_x_ = out_put0_float_transpose_[row_, 0];ob_._boxe_center_y_ = out_put0_float_transpose_[row_, 1];ob_._boxe_center_width_ = out_put0_float_transpose_[row_, 2];ob_._boxe_center_height_ = out_put0_float_transpose_[row_, 3];ob_._x1 = ob_._boxe_center_x_- ob_._boxe_center_width_/2;ob_._x2 = ob_._boxe_center_x_ + ob_._boxe_center_width_ / 2;ob_._y1 = ob_._boxe_center_y_ - ob_._boxe_center_height_ / 2;ob_._y2 = ob_._boxe_center_x_ + ob_._boxe_center_height_ / 2;//取出maskfloat[,] mask_ = new float[1, 32];for (int column_ = 84; column_ < 116; column_++)//检测最大分数{if (prob_ < out_put0_float_transpose_[row_, column_]){mask_[0, column_ - 84] = out_put0_float_transpose_[row_, column_];}}//矩阵相乘masks_*out_put1_float_transpose_float[,] masks_multiply_output1_float_transpose_ = MultiplyMatrices(mask_, out_put1_float_transpose_);ob_._mask = new float[160, 160];int masks_multiply_output1_float_transpose_index_ = 0;for (int row_mask_image_ = 0; row_mask_image_ < 160; row_mask_image_++){for (int column_mask_image_ = 0; column_mask_image_ < 160; column_mask_image_++){float num_ = masks_multiply_output1_float_transpose_[0, masks_multiply_output1_float_transpose_index_];float num1_ = (float)(1 / (1 + Math.Exp(-num_)));if (num1_ > 0.5){ob_._mask[row_mask_image_, column_mask_image_] = 1;}else{ob_._mask[row_mask_image_, column_mask_image_] = 0;}masks_multiply_output1_float_transpose_index_++;}}object_temp_list_.Add(ob_);}}#endregion#region 去除重叠while (object_temp_list_.Count > 0){ObjectStruct object_temp_ = object_temp_list_[0]; for (int i = 0; i < object_temp_list_.Count; i++){double dis1_ = Math.Abs(object_temp_._x1 - object_temp_list_[i]._x1);double dis2_ = Math.Abs(object_temp_._y1 - object_temp_list_[i]._y1);double dis3_ = Math.Abs(object_temp_._x2 - object_temp_list_[i]._x2);double dis4_ = Math.Abs(object_temp_._y2 - object_temp_list_[i]._y2);if (dis1_ < _overlap_distance&& dis2_ < _overlap_distance&& dis3_ < _overlap_distance&& dis4_ < _overlap_distance){object_temp_list_.RemoveAt(i);i--;}}_object_list.Add(object_temp_);}#endregion#region 释放资源for (int i = 0; i < results_.Count; i++){results_[i].Dispose();}results_.Dispose();input_ort_value_.Dispose();inputs1_.Clear();#endregion_break_off = false;GC.Collect();}

要完成代码可以在b站我的工房购买 https://gf.bilibili.com/item/detail/1105641118

这篇关于c#使用onnxruntime调用yolo模型导出的onnx模型分割图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831654

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解