Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中)

2024-03-20 18:52

本文主要是介绍Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前情回顾

  • 由上一节,我们可以得到:
    • 任何一个独热编码的词都可以通过Q矩阵得到一个词向量,而词向量有两个优点:
      • 可以改变输入的维度(原来是很大的独热编码,但是我们经过一个Q矩阵后,维度就可以控制了)
      • 相似词之间的词向量有了关系
  • 但是,在NNLM(神经网络语言模型的一种)中,词向量是一个副产品,即主要目的并不是生成词向量,而是去预测下一个词是什么,所以它对预测的精度要求很高,模型就会很复杂,也就不容易去计算Q矩阵和词向量
  • 模型图如下:
    在这里插入图片描述
  • 因此提出了一个专门生成词向量的神经网络语言模型----Word2Vec

Word2Vec

  • 主要目的是生成词向量,模型图如下:
    在这里插入图片描述
  • 虽然NNLM和Word2Vec基本一致,不考虑细节,网络架构基本一致
  • 但是由于Word2Vec的主要目的是生成词向量,那么对预测精度的要求可以放低,甚至只要合理,就算有多个结果也可以,因此模型不会很复杂,也就是可以更容易的计算出Q矩阵和词向量
  • 所以对比NNLM,Word2Vec不用预测更准确,只需要可以正常的进行一个反向传播,可以去掉激活函数,加快计算速度,如下:
    在这里插入图片描述
  • Word2Vec的缺点:
    • 词向量不能表示一词多义,如果我们在训练中给某一个词选择了一个词向量,但是在测试中,同样的词可能会有其他意思,那模型仍然不知道这个位置应该填入什么词,如下:
      在这里插入图片描述

CBOW

  • 给出一个词的上下文,预测这个词,如下:
    在这里插入图片描述
  • 由于Q矩阵和词向量的产生在INPUT到PROJECTION的过程中,且CBOW会有更多的Q矩阵和词向量,也就意味着它生成词向量的效率更高,如下:
    在这里插入图片描述

Skip-gram

  • 给出一个词,得到这个词的上下文,如下:
    在这里插入图片描述
  • 相反,在Skip-gram中,我们得到Q矩阵和词向量的效率会低一些
    在这里插入图片描述

如何将词向量使用在下游任务中

  • Word2Vec是预训练模型,而预训练模型分为两种:假设给出任务A和任务B,其中对于任务A我们已经得出了一个良好的模型A,而任务B由于数据集太小或训练太复杂等其他原因,无法解决,即无法得出模型B
    • 我们可以使用模型A,来辅助解决任务B
    • 或者使用模型A,来加快模型B的生成
  • 词向量大多数用在第二种,加快模型B的生成
    在这里插入图片描述
  • 在经典的NLP领域中:在将输入X、Y传入网络后,从W(独热编码,是一种一一对应的表查询,不是预训练)到隐藏层需要经过一个Q矩阵,而这个Q矩阵可以使用Word2Vec预训练好的Q矩阵,并直接得到词向量,然后进行接下来的具体任务
  • 在我们使用Word2Vec的Q矩阵也有两种方式
    • 冻结:不改变Q矩阵
    • 微调:随着任务的改变,在模型的训练过程中,改变Q矩阵
  • 以后的transformer和BERT都是用在预训练这一块,而其他的网络结构是根据任务的不同进行改变的,也就意味着在相同的任务下,我们可以通过改变预训练来找到创新点。

参考文献

  1. 06 Word2Vec模型(第一个专门做词向量的模型,CBOW和Skip-gram)

这篇关于Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830416

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud