本文主要是介绍南邮离散数学实验1 (简单版) 根据真值求真值表和主范式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
#include <iostream>
#include <cmath>
using namespace std;
int const MAX = 1e6;
short true_value[MAX]; //真值
short true_table[MAX][10]; //真值表
short pdnf[MAX]; //主析取范式
short pcnf[MAX]; //主合取范式
char varible[10] = {'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y'}; //定义变元
int cnt1 = 0, cnt2 = 0; //cnt1记录真值为1的数目,cnt2记录真值为0的数目
void Output_pdnf() //输出主析取范式
{cout << "主析取范式为 : " << endl;if(cnt2 == 1)cout << 'm' << pdnf[0] << endl;else{for(int i = 0; i < cnt2 - 1; i++)cout << 'm' << pdnf[i] << " V ";cout << 'm' << pdnf[cnt2 - 1] << endl;}
}void Output_pcnf() //输出主合取范式
{cout << "主合取范式为 : " << endl;if(cnt1 == 1)cout << 'M' << pcnf[0] << endl;else{for(int i = 0; i < cnt1 - 1; i++)cout << 'M' << pcnf[i] << " ∧ ";cout << 'M' << pcnf[cnt1 - 1] << endl;}
}int main()
{int n, i;cout << "请输入命题变元的个数 :" << endl;cin >> n;cout << "请输入表达式的真值 :" << endl;for(i = 0; i < (int) pow(2.0, n * 1.0); i++){cin >> true_value[i]; //输入真值if(true_value[i])pcnf[cnt1++] = i;elsepdnf[cnt2++] = i;}cout << "真值表为 :" << endl;for(i = 0; i < n; i++)cout << "\t" << varible[i];cout << "\t" << 'A' << endl;for(i = 0; i < (int) pow(2.0, n * 1.0); i++) {int tmp = (int) pow(2.0, n * 1.0) - 1 - i;for(int j = n - 1; j >= 0; j--){true_table[i][j] = tmp % 2;tmp /= 2;}}for(i = 0; i < (int) pow(2.0, n * 1.0); i++)true_table[i][n] = true_value[i];for(i = 0; i < (int) pow(2.0, n * 1.0); i++) {for(int j = 0; j < n + 1; j++)cout << "\t" << true_table[i][j];cout << endl;}Output_pdnf();Output_pcnf();return 0;
}
修改版:
#include <iostream>
#define MAX 100000
using namespace std;
short trueValue[MAX]; //真值
short trueTable[MAX][10]; //真值表
short pdnf[MAX]; //主析取范式
short pcnf[MAX]; //主合取范式
int cnt1 = 0, cnt2 = 0; //cnt1记录真值为1的数目,cnt2记录真值为0的数目
int n, i;
void Output_pdnf() {//输出主析取范式cout << "主析取范式为 : " << endl;string ans = "";int tmpcnt = 0;for (int i = 0; i < (1 << n); i ++) { if (trueTable[i][n] == 1) {tmpcnt ++;ans += '(';for (int j = 0; j < n; j ++) { if (trueTable[i][j] == 0) {ans += '!';}ans += (j + 'P');if (j != n - 1) {ans += " ∧ ";}}ans += ')';if (tmpcnt < cnt1) {ans += " V ";}}}cout << ans << endl;
}void Output_pcnf() {//输出主合取范式cout << "主合取范式为 : " << endl;string ans = "";int tmpcnt = 0;for (int i = 0; i < (1 << n); i ++) { if (trueTable[i][n] == 0) {tmpcnt ++;ans += '(';for (int j = 0; j < n; j ++) { if (trueTable[i][j] == 1) {ans += '!';}ans += (j + 'P');if (j != n - 1) {ans += " V ";}}ans += ')';if (tmpcnt < cnt2) {ans += " ∧ ";}}}cout << ans << endl;
}int main() {cout << "请输入命题变元的个数 :" << endl;cin >> n;cout << "请输入表达式的真值 :" << endl;for (i = 0; i < (1 << n); i ++) {cin >> trueValue[i]; //输入真值if (trueValue[i]) {pcnf[cnt1 ++] = i;}else {pdnf[cnt2 ++] = i;}}for (i = 0; i < (1 << n); i ++) {int tmp = i;for (int j = n - 1; j >= 0; j--) {trueTable[i][j] = tmp % 2;tmp /= 2;}}for (i = 0; i < (1 << n); i++) {trueTable[i][n] = trueValue[i];}Output_pdnf();Output_pcnf();return 0;
}
这篇关于南邮离散数学实验1 (简单版) 根据真值求真值表和主范式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!