NOJ 1203 最多约数问题 (算数基本定理 DFS +剪枝)

2024-03-20 14:38

本文主要是介绍NOJ 1203 最多约数问题 (算数基本定理 DFS +剪枝),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


最多约数问题
                                                时间限制(普通/Java) : 20000 MS/ 30000 MS          运行内存限制 : 81920 KByte

题目描述

   正整数x的约数是能整除x的正整数。正整数x的约数个数记为divx)。例如,1,2,5,10都是正整数10的约数,且div(10)=4 对于给定的2个正整数a<=b,编程计算ab之间约数个数最多的数。

输入

输入的第1行有两个正整数ab

输出

若找到的a和b之间约数个数最多的数是x,则输出div(x)。

样例输入

1 36

样例输出

9


题目链接:http://acm.njupt.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1203

题目分析:数论,算术基本定理的应用,加上各种牛逼的剪枝

本题的要求是,求出一个给定区间内的含约数最多的整数。
首先明确一下如何求一个数的约数个数:若一个数N满足:N = A1 N1 * A2 N2 * A3 N3 * …… * Am Nm,则n的约数个数为(N1 + 1) (N2 + 1) (N3 + 1) …… (Nm + 1)。这是可以用乘法原理证明的。
最浅显的算法是,枚举区间内的每个整数,统计它们的约数个数。这个算法很容易实现,但是时间复杂度却相当高。因为题目约定区间的最大宽度可以达到10^9的数量级,相当庞大。因此,在极限规模时,时间是无法忍受的。所以,我们需要尽量的优化时间。
分析一下枚举的过程就会发现,如果我们枚举到两个数n和m*n(m为一相对于n较大的质数),那么我们将重复计算n的约数两次。据此,我们发现了枚举效率低的根本所在。为了解决这一重复,我们可以选取另一种搜索方法——以质因子为对象进行深度搜索。
初始时,令number := 1,然后从最小的质数2开始枚举,枚举包含一个2、两个2……n个2的情况……直至number * 2 n大于区间的上限(max)。对于每种“2^k的情况”,令number := number * 2 n,再枚举3的情况,然后,枚举5的情况、7的情况……方法相同。整个过程是一个深度搜索的过程。当number大于等于区间下限(min)时,我们就找到了一个区间内的数,根据前面介绍的方法,可以得到它的约数个数。所有的区间内的数的约数个数的最大值就是我们要求的目标。
     为什么这种深度搜索可以减少常规枚举过程中的重复问题呢?请看下面的一个例子
     设给定的区间为[6,30],6,18,30为区间内的数,按照常规枚举方法,计算18,30,的时候分别计算了因子6的约数个数,重复计算2次。如果使用上述所说的深度搜索方法,求这3个数的因数个数的路径有一条公共部分,2*3,这一部分只计算了一次,求18只需再乘个3,求30只需再乘个5,相对于常规枚举减少了两次计算2*3的时间。但这种深度搜索也有问题,就是number有可能是无用的,下面的分析便是对这种深搜方法进行无用数据剪枝。
    值得注意的是,我们枚举过程中得到的number可能无用的,即无论用number去乘以多少,都无法得到区间内的数。这样的number如果继续枚举下去,无疑会大大降低效率。那么,能否通过简单的判断,将其剪去呢?答案是可以的。很容易证明,如果(min – 1) div number < max div number,则区间内存在可以被number整除的数。因为,如果区间[min, max]内存在可以被number整除的数,也即是从min到max中至少有一个数能被number整除,那么区间[min – 1, max]内的数被number除得的商肯定不止一种,所以(min – 1) div number必然小于max div number。
反过来,如果(min-1)div number=max div number,则[min,max]内不存在可以被number整除的数。
证明如下:
假设[min,max]内存在可以被number整除的数
如果(min-1) div number=max div number,则min div number = max div number,那么①min等于max,且min和max均可以被number整除,或者②max>min,min可以被number整除,①的情况下可推出,(min-1) div nunber<max div number,与条件矛盾,舍去;②的情况下也可以推出(min-1) div number<max div number,舍去。所以结论成立。因此,我们只需枚举符合要求的number;至于不符合的,可以剪去

此外,我们枚举的质数可能会达到很大。因为给出的整数最大可以达到4,000,000,000,它的质因数自然最大也可以到100,000,000的数量级。如果按上面的方法枚举,显然无法承受时间的压力。但是,我们又可以看到,对于区间内的任一整数,它包含的大于SQRT(4,000,000,000) = 2*31623的质因数最多只可能有一个。因此,我们只需枚举小于2*31623的质数。如果对一个符合要求的number(即,可以证明区间内至少存在一个数可以被number整除),无法找到一个小于2*31623的质数p使得number * p * x ∈ [min, max](x为一正整数)。那么,可知number需要乘以一个大于31623的质数才能得到number’,使得number’ ∈ [min, max]。根据前面介绍的乘法原理,只需将number包含的约数个数乘以2,即得number’包含的约数个数。
我们还能看到,如果当前搜索状态为(from, number, total),其中from是指当前枚举到的质因子(按从小到大枚举),total是指number中包含的约数个数。那么剩下的因子数最多为q = [log from(max / number)],这些因子组成的约数个数(即上述求约数个数时用到的一串乘积)最大为2 q。当前所能取到的(理想情况)最大约数个数就是total * 2 q,如果这个数仍然无法超过当前最优解,则这一分支可以剪去。
深度搜索的过程,从表面上看是一个指数级的复杂度。其实不然,更准确的说,复杂度应为O(p logn)。因为,它的指数增长速度是随n成对数级增长,本质上说,还是多项式级的算法。而且我们还进行了一些剪枝,由于枚举中的分支多数为非法的,因此通过剪枝可以去掉绝大多数的分支。这样就大大提高了程序的效率。

#include <cstdio>
#include <cstring>
#include <cmath>
int const MAX = 100005;
int prime[MAX];
int ma, cnt, l, r;void get_prime()  
{bool get[MAX];memset(get, true, sizeof(get));get[0] = get[1] = false;for(int i = 2; i <= sqrt(MAX); i++)if (get[i])for(int j = i * i; j <= MAX; j += i)get[j] = false;for(int i = 2; i <= MAX; i++)if(get[i])prime[++cnt] = i;
}void search(int from, int tot, int num, int left, int right)
{ma = tot > ma ? tot : ma;  if((left == right) && (left > num))search(from, tot * 2, num * left, 1, 1);for(int i = from; i <= cnt; i++)    {if (prime[i] >right)   return;else{int j = prime[i], x = left - 1, y = right, n = num, t = tot, m = 1;while(true){m ++;   t += tot;x /= j;y /= j;if (x == y)break;n *= j;search(i + 1, t, n, x + 1, y);}if (tot < (ma / (1 << m)))return;}}
}int main()
{cnt = 0;get_prime();while(scanf("%d %d", &l, &r) != EOF){if((l == 1) && (r == 1))ma = 1;else{ma = 2;search(1, 1, 1, l, r);}printf("%d\n", ma);}
}


这篇关于NOJ 1203 最多约数问题 (算数基本定理 DFS +剪枝)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829792

相关文章

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放