[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列)

本文主要是介绍[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Ho编写了一个处理数据包的程序。程序的输入是一个包含N个数据包的序列。每个数据包根据其重要程度不同,具有不同的"延迟惩罚值"。序列中的第i个数据包的"延迟惩罚值"是Pi。如果N个数据包按照<Pi1, Pi2, ... PiN>的顺序被处理,那么总延迟惩罚

SP=1*Pi1+2*Pi2+3*Pi3+...+N*PiN(其中i1, i2, ... iN是1, 2, 3, ... N的一个排列)。

小Ho的程序会依次处理每一个数据包,这时N个数据包的总延迟惩罚值SP为

1*P1+2*P2+3*P3+...+i*Pi+...+N*PN。  

小Hi希望可以降低总延迟惩罚值。他的做法是在小Ho的程序中增加一个大小为K的缓冲区。N个数据包在被处理前会依次进入缓冲区。当缓冲区满的时候会将当前缓冲区内"延迟惩罚值"最大的数据包移出缓冲区并进行处理。直到没有新的数据包进入缓冲区时,缓冲区内剩余的数据包会按照"延迟惩罚值"从大到小的顺序被依次移出并进行处理。

例如,当数据包的"延迟惩罚值"依次是<5, 3, 1, 2, 4>,缓冲区大小K=2时,数据包被处理的顺序是:<5, 3, 2, 4, 1>。这时SP=1*5+2*3+3*2+4*4+5*1=38。

现在给定输入的数据包序列,以及一个总延迟惩罚阈值Q。小Hi想知道如果要SP<=Q,缓冲区的大小最小是多少?

输入

Line 1: N Q

Line 2: P1 P2 ... PN

对于50%的数据: 1 <= N <= 1000

对于100%的数据: 1 <= N <= 100000, 0 <= Pi <= 1000, 1 <= Q <= 1013

输出

输出最小的正整数K值能满足SP<=Q。如果没有符合条件的K,输出-1。

样例输入
5 38
5 3 1 2 4
样例输出
2

题目链接: http://hihocoder.com/problemset/problem/1269

题目分析:因为可以发现K越大,SP的值越小,所以可以二分K值,priority_queue模拟过程,判断即可

#include <cstdio>  
#include <cstring>
#include <algorithm>  
#include <queue>  
#define ll long long  
using namespace std;  
int const MAX = 100005;  
int n;  
ll p[MAX], pp[MAX], Q, sum;  bool judge(int x)  
{  priority_queue <ll> q;  int i = 1;  ll cnt = 1;  sum = 0;  while(i <= n)  {  while(i <= n && (int) q.size() != x)  q.push(p[i ++]);  sum += cnt * q.top();  q.pop();  cnt ++;  if(i == n + 1)  {  while(!q.empty())  {  sum += cnt * q.top();  q.pop();  cnt ++;  }  }  }  return sum <= Q;  
}  int main()  
{  ll tmp = 0;scanf("%d %lld", &n, &Q);  for(int i = 1; i <= n; i++)  scanf("%lld", &p[i]);     memcpy(pp, p, sizeof(p));sort(pp + 1, pp + n + 1);for(int i = 1; i <= n; i++)  tmp += pp[i] * (n - i + 1);if(tmp > Q){printf("-1\n");return 0;}int l = 1, r = MAX, mid, ans;while(l <= r)  {  mid = (l + r) >> 1;  if(judge(mid))  {ans = mid;r = mid - 1;}else  l = mid + 1;}  printf("%d\n", ans);  
} 





这篇关于[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829613

相关文章

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N