信息系统项目管理师020:信息安全(2信息技术发展—2.1信息技术及其发展—2.1.4信息安全)

本文主要是介绍信息系统项目管理师020:信息安全(2信息技术发展—2.1信息技术及其发展—2.1.4信息安全),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 2.1.4 信息安全
    • 1.信息安全基础
    • 2.加密解密
    • 3.安全行为分析技术
    • 4.网络安全态势感知

2.1.4 信息安全

  常见的信息安全问题主要表现为:计算机病毒泛滥、恶意软件的入侵、黑客攻击、利用计算机犯罪、网络有害信息泛滥、个人隐私泄露等。随着物联网、云计算、人工智能、大数据等新一代信息技术的广泛应用,信息安全也面临着新的问题和挑战。

在这里插入图片描述

1.信息安全基础

  信息安全强调信息(数据)本身的安全属性,主要包括以下内容:

●保密性(Confidentiality):信息不被未授权者知晓的属性。
●完整性(Integrity):信息是正确的、真实的、未被篡改的、完整无缺的属性。
●可用性(Availability):信息可以随时正常使用的属性。

  信息必须依赖其存储、传输、处理及应用的载体(媒介)而存在,因此针对信息系统,安全可以划分为四个层次:设备安全、数据安全、内容安全、行为安全。

  信息系统一般由计算机系统、网络系统、操作系统、数据库系统和应用系统组成。与此对应,信息系统安全主要包括计算机设备安全、网络安全、操作系统安全、数据库系统安全和应用系统安全等。

  网络安全技术主要包括:防火墙、入侵检测与防护、VPN、安全扫描、网络蜜罐技术、用户和实体行为分析技术等。


2.加密解密

  为了保证信息的安全性,就需要采用信息加密技术对信息进行伪装,使得信息非法窃取者无法理解信息的真实含义:需要采用加密算法提取信息的特征码(校验码)或特征矢量,并与有关信息封装在一起,信息的合法拥有者可以利用特征码对信息的完整性进行校验:需要采用加密算法对信息使用者的身份进行认证、识别和确认,以对信息的使用进行控制。

  发信者将明文数据加密成密文,然后将密文数据送入网络传输或存入计算机文件,而且只给合法收信者分配密钥。合法收信者接收到密文后,实行与加密变换相逆的变换,去掉密文的伪装并恢复出明文,这一过程称为解密(Decryption)。解密在解密密钥的控制下进行。用于解密的一组数学变换称为解密算法。

  加密技术包括两个元素:算法和密钥。密钥加密技术的密码体制分为对称密钥体制和非对称密钥体制两种。相应地,对数据加密的技术分为两类,即对称加密(私人密钥加密)和非对称加密(公开密钥加密)。对称加密以数据加密标准(Data Encryption Standard,.DES)算法为典型代表,非对称加密通常以RSA(Rivest Shamir Adleman)算法为代表。对称加密的加密密钥和解密密钥相同,而非对称加密的加密密钥和解密密钥不同,加密密钥可以公开而解密密钥需要保密。


3.安全行为分析技术

  传统安全产品、技术、方案基本上都是基于已知特征进行规则匹配来进行分析和检测。基于特征、规则和人工分析,以“特征”为核心的检测分析存在安全可见性盲区,有滞后效应、无力检测未知攻击、容易被绕过,以及难以适应攻防对抗的网络现实和快速变化的组织环境、外部威胁等问题。另一方面,虽然大多数的攻击可能来自组织以外,但最严重的损害往往是由内部人员造成的,只有管理好内部威胁,才能保证信息和网络安全。

  用户和实体行为分析(User and Entity Behavior Analytics,.UEBA)提供了用户画像及基于各种分析方法的异常检测,结合基本分析方法(利用签名的规则、模式匹配、简单统计、阈值等)和高级分析方法(监督和无监督的机器学习等),用打包分析来评估用户和其他实体(主机、应用程序、网络、数据库等),发现与用户或实体标准画像或行为异常的活动所相关的潜在事件。UEBA以用户和实体为对象,利用大数据,结合规则以及机器学习模型,并通过定义此类基线,对用户和实体行为进行分析和异常检测,尽可能快速地感知内部用户和实体的可疑或非法行为。

  UEBA是一个完整的系统,涉及算法、工程等检测部分,以及用户与实体风险评分排序、
调查等用户交换和反馈。从架构上来看,UEBA系统通常包括数据获取层、算法分析层和场景
应用层。


4.网络安全态势感知

  网络安全态势感知(Network Security Situation Awareness)是在大规模网络环境中,对能够引起网络态势发生变化的安全要素进行获取、理解、显示,并据此预测未来的网络安全发展趋势。安全态势感知不仅是一种安全技术,也是一种新兴的安全概念。它是一种基于环境的、动态的、整体的洞悉安全风险的能力。安全态势感知的前提是安全大数据,其在安全大数据的基础上进行数据整合、特征提取等,然后应用一系列态势评估算法生成网络的整体态势状况,应用态势预测算法预测态势的发展状况,并使用数据可视化技术,将态势状况和预测情况展示给安全人员,方便安全人员直观便捷地了解网络当前状态及预期的风险。

  网络安全态势感知的关键技术主要包括:海量多元异构数据的汇聚融合技术、面向多类型的网络安全威胁评估技术、网络安全态势评估与决策支撑技术、网络安全态势可视化等。

这篇关于信息系统项目管理师020:信息安全(2信息技术发展—2.1信息技术及其发展—2.1.4信息安全)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828413

相关文章

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

从戴尔公司中国大饭店DTF大会,看科技外企如何在中国市场发展

【科技明说 | 科技热点关注】 2024戴尔科技峰会在8月如期举行,虽然因事未能抵达现场参加,我只是观看了网上在线直播,也未能采访到DTF现场重要与会者,但是通过数十年对戴尔的跟踪与观察,我觉得2024戴尔科技峰会给业界传递了6大重要信号。不妨简单聊聊:从戴尔公司中国大饭店DTF大会,看科技外企如何在中国市场发展? 1)退出中国的谣言不攻自破。 之前有不良媒体宣扬戴尔将退出中国的谣言,随着2

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

【2.1 深度学习中的感知机是什么】

2.1 深度学习中的感知机是什么 深度学习是机器学习的一个分支,它模拟人脑的工作方式来处理数据,尤其是通过神经网络的结构来自动提取数据的特征并进行分类、回归或其他复杂的任务。在深度学习的早期发展中,许多基础概念和模型为后续的复杂网络奠定了基础。其中,**感知机(Perceptron)**是一个非常重要的基础模型,它实际上是神经网络和深度学习的前身之一。 感知机的基本概念 感知机是一种二分

【IT】软件行业发展的前瞻性和希望的广度

我说一下我对程序应用的一个看法就是 我其实个人不太建议自动驾驶技术的发展因为这个东西它说到底还是什么那么一点安全隐患 ,虽然我们平常考虑用同时实行各种各样的高级的自动作用, 但是自动驾驶可能是个特例,其实我个人觉得程序可以在以下方面发展 1.医学(包括诊断 治疗 手术等)因为现在也有很多的疾病是医学还没有能力去解决的 ,2.国防 有的时候因为国家安全真的非常重要的,因为我们每个人

【信创建设】信息系统信创建设整体技方案(word原件完整版)

信创,即“信息技术应用创新”。我国自主信息产业聚焦信息技术应用创新,旨在通过对IT硬件、软件等各个环节的重构,基于我国自有IT底层架构和标准,形成自有开放生态,从根本上解决本质安全问题,实现信息技术可掌控、可研究、可发展、可生产。信创发展是一项国家战略,也是当今形势下国家经济发展的新功能。信创产业发展已经成为各行各业数字化转型、提升产业链发展的关键。 软件全套资料部分文档清单: 工作安排任

【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

Function Calling是大模型连接外部世界的通道,目前出现的插件(Plugins )、OpenAI的Actions、各个大模型平台中出现的tools工具集,其实都是Function Calling的范畴。时下大火的OpenAI的GPTs,原理就是使用了Function Calling,例如联网检索、code interpreter。 本文带大家了解下Function calling,看

系统架构的发展历程之模块化与组件化

模块化开发方法 模块化开发方法是指把一个待开发的软件分解成若干个小的而且简单的部分,采用对复杂事物分而治之的经典原则。模块化开发方法涉及的主要问题是模块设计的规则,即系统如何分解成模块。而每一模块都可独立开发与测试,最后再组装成一个完整软件。对一个规约进行分解,以得到模块系统结构的方法有数据结构设计法、功能分解法、数据流设计和面向对象的设计等。将系统分解成模块时,应该遵循以下规则: (1)最高模

《中国全屋智能行业发展现状与投资前景研究分析报告》

报告导读:本报告从国际全屋智能发展、国内全屋智能政策环境及发展、研发动态、供需情况、重点生产企业、存在的问题及对策等多方面多角度阐述了全屋智能市场的发展,并在此基础上对全屋智能的发展前景做出了科学的预测,最后对全屋智能投资潜力进行了分析。  订购链接:https://www.yxresearch.com/ 第一章全屋智能行业概念界定及发展环境剖析 第一节全屋智能行业相关概念界定 一、智能家

RNN发展(RNN/LSTM/GRU/GNMT/transformer/RWKV)

RNN到GRU参考: https://blog.csdn.net/weixin_36378508/article/details/115101779 tRANSFORMERS参考: seq2seq到attention到transformer理解 GNMT 2016年9月 谷歌,基于神经网络的翻译系统(GNMT),并宣称GNMT在多个主要语言对的翻译中将翻译误差降低了55%-85%以上, G