【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

本文主要是介绍【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Function Calling是大模型连接外部世界的通道,目前出现的插件(Plugins )、OpenAI的Actions、各个大模型平台中出现的tools工具集,其实都是Function Calling的范畴。时下大火的OpenAI的GPTs,原理就是使用了Function Calling,例如联网检索、code interpreter。

本文带大家了解下Function calling,看它是如何让大模型能与外部世界连接的。

0. 接口形式

写过程序的人可能都懂接口是什么,这里再简述一下接口的形式。

  • 目前常见的接口形式:
    • 命令行(Command Line Interface),简称 CLI(DOS、Unix/Linux shell, Windows Power Shell)
    • 图形界面(Graphical User Interface),简称 GUI(Windows、MacOS、iOS、Android)
  • AI时代的接口形式:用户通过自然语言与软件或系统交互,不用再点击按钮,按标准流程操作软件
    • 语言界面(Conversational User Interface),简称 CUI,或 Natural-Language User Interface,简称 LUI
  • 未来的接口形式:
    • 脑机接口(Brain–Computer Interface),简称 BCI

以前的接口调用,我们需要给定明确的接口名称和精确的参数。大模型时代的接口调用,我们只需要给出自然语言任务,大模型自动解析出参数和调用哪个接口。

1. Function Calling在AI大模型应用中的位置 - 架构

没有Function Calling的架构:

image.png

加入Function calling之后的架构:

image.png

2. 大模型为什么需要连接外部世界

其实大模型也不是万能的,它有三大缺陷:

  • 训练数据不可能涵盖所有信息。垂直、非公开数据必有欠缺。
  • 不知道最新信息。大模型的训练周期很长,且更新一次耗资巨大。所以它不可能实时训练。GPT-3.5 的知识截至 2022 年 1 月,GPT-4 是 2023 年 4 月。
  • 没有「真逻辑」。它表现出的逻辑、推理,是训练文本的统计规律,而不是真正的逻辑。也就是说,它的结果都是有一定不确定性的,这对于需要精确和确定结果的领域,如数学等,是灾难性的,基本是不可用的。

比如算加法:

  • 把 100 以内所有加法算式都训练给大模型,它就能回答 100 以内的加法算式
  • 如果问它更大数字的加法,就不一定对了 因为它并不懂「加法」,只是记住了 100 以内的加法算式的统计规律

所以:大模型需要连接真实世界,并对接真逻辑系统,以此来控制大模型输出的不确定性和幻觉,达到我们想要的结果。

3. 实战

3.1 调用本地函数

3.1.1 定义一个自定义的本地函数,也可以是现有的库中的函数

以Python内置的sum函数为例,假设我们想让大模型使用这个函数。

sum函数介绍,接收一个列表、元组或集合:

image.png

3.1.2 告诉大模型这个函数的存在
python代码解读复制代码def get_completion(messages, model="gpt-3.5-turbo-1106"):response = openai.chat.completions.create(model=model,messages=messages,temperature=0,max_tokens=1024,tools=[{ # 用 JSON 描述函数。可以定义多个。由大模型决定调用谁"type": "function","function": {"name": "sum","description": "计算一组数的和","parameters": {"type": "object","properties": {"numbers": {"type": "array","items": {"type": "number"}}}}}},])return response.choices[0].message

代码解释:

  • 还是我们熟悉的openai.chat.completions.create接口,这次我们需要使用的是tools参数
  • 将本地的函数用json描述,添加到tools参数中

注意:Function Calling 中的函数与参数的描述description也是一种 Prompt。这种 Prompt 也需要调优,否则会影响函数的召回、参数的准确性,甚至让 GPT 产生幻觉

3.1.3 给一个需要使用该函数的Prompt

我们用自然语言给一个做加法的需求:

python代码解读复制代码prompt = "桌上有 2 个苹果,四个桃子和 3 本书,一共有几个水果?"messages = [{"role": "system", "content": "你是一个数学家,你可以计算任何算式。"},{"role": "user", "content": prompt}
]
response = get_completion(messages)
messages.append(response) # 注意这一句,必须加入到上下文中,否则报错
print("=====GPT回复=====")
print(response)

运行看下这时候大模型的返回: 在这里插入图片描述 可以看到返回了函数的名称和函数的参数。

3.1.4 解析函数名称和参数

当大模型返回了需要调用的名称和参数之后,我们可以通过本地代码解析出来,然后再去调用相应函数。

python代码解读复制代码if (response.tool_calls is not None):for tool_call in response.tool_calls:print(response.tool_calls)print(f"调用 {tool_call.function.name} 函数,参数是 {tool_call.function.arguments}")if tool_call.function.name == "sum":# 调用 sum 函数(本地函数或库函数,非chatgpt),打印结果args = json.loads(tool_call.function.arguments)result = sum(args["numbers"])print("=====函数返回=====")print(result)

image.png

3.1.5 再次调用大模型获取最终结果

本地函数执行完得到结果后,再将这个结果给大模型,让大模型用自然语言组织起最终答案。

这里需要怎么给大模型呢?需要将函数调用结果,tool_call_id,role,name等一起加入到prompt中。

python代码解读复制代码# 把函数调用结果加入到对话历史中
messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": "sum","content": str(result)  # 数值result 必须转成字符串}
)# 再次调用大模型
print("=====最终回复=====")
print(get_completion(messages).content)

image.png

经测试,tool_call_id和role是必须参数,name可以不要,但最好也加上。

3.1.6 完整代码
python代码解读复制代码import json
import os
from math import *
import openai
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())def get_completion(messages, model="gpt-3.5-turbo-1106"):response = openai.chat.completions.create(model=model,messages=messages,temperature=0,max_tokens=1024,tools=[{ # 用 JSON 描述函数。可以定义多个。由大模型决定调用谁"type": "function","function": {"name": "sum","description": "计算一组数的和","parameters": {"type": "object","properties": {"numbers": {"type": "array","items": {"type": "number"}}}}}},])return response.choices[0].messageprompt = "桌上有 2 个苹果,四个桃子和 3 本书,一共有几个水果?"messages = [{"role": "system", "content": "你是一个数学家,你可以计算任何算式。"},{"role": "user", "content": prompt}
]
response = get_completion(messages)
# 把大模型的回复加入到对话历史中
messages.append(response) # 注意这一句,必须加入到上下文中,否则报错
print("=====GPT回复=====")
print(response)# 如果返回的是函数调用结果,则打印出来
if (response.tool_calls is not None):for tool_call in response.tool_calls:print(response.tool_calls)print(f"调用 {tool_call.function.name} 函数,参数是 {tool_call.function.arguments}")if tool_call.function.name == "sum":# 调用 sum 函数(本地函数或库函数,非chatgpt),打印结果args = json.loads(tool_call.function.arguments)result = sum(args["numbers"])print("=====函数返回=====")print(result)# 把函数调用结果加入到对话历史中messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": "sum","content": str(result)  # 数值result 必须转成字符串})# 再次调用大模型print("=====最终回复=====")print(get_completion(messages).content)

3.2 多Function的调用

这里以一个查询某个地点附近某些信息的需求为例。

3.2.1 定义本地函数

这里我们需要定义自己的本地函数,不再使用Python的库函数了。

下面的代码,我们定义了两个函数。

  • get_location_coordinate用于查询某个地点的地理坐标。
  • search_nearby_pois用于查询地理坐标附近的某些信息(取决于用户输入的Keyword)
python代码解读复制代码def get_location_coordinate(location, city="北京"):url = f"https://restapi.amap.com/v5/place/text?key={amap_key}&keywords={location}&region={city}"print(url)r = requests.get(url)result = r.json()if "pois" in result and result["pois"]:return result["pois"][0]return Nonedef search_nearby_pois(longitude, latitude, keyword):url = f"https://restapi.amap.com/v5/place/around?key={amap_key}&keywords={keyword}&location={longitude},{latitude}"print(url)r = requests.get(url)result = r.json()ans = ""if "pois" in result and result["pois"]:for i in range(min(3, len(result["pois"]))):name = result["pois"][i]["name"]address = result["pois"][i]["address"]distance = result["pois"][i]["distance"]ans += f"{name}\n{address}\n距离:{distance}米\n\n"return ans

这是用的高德地图的开放接口,在使用本例之前,你需要先去高德地图开放接口的官网申请一个key,免费的。这里就不过多介绍了。

在这里插入图片描述

3.2.2 告诉大模型这两个函数的存在
python代码解读复制代码def get_completion(messages, model="gpt-3.5-turbo-1106"):response = openai.chat.completions.create(model=model,messages=messages,temperature=0,max_tokens=1024,tools=[{"type": "function","function": {"name": "get_location_coordinate","description": "根据POI名称,获得POI的经纬度坐标","parameters": {"type": "object","properties": {"location": {"type": "string","description": "POI名称,必须是中文",},"city": {"type": "string","description": "POI所在的城市名,必须是中文",}},"required": ["location", "city"],}}},{"type": "function","function": {"name": "search_nearby_pois","description": "搜索给定坐标附近的poi","parameters": {"type": "object","properties": {"longitude": {"type": "string","description": "中心点的经度",},"latitude": {"type": "string","description": "中心点的纬度",},"keyword": {"type": "string","description": "目标poi的关键字",}},"required": ["longitude", "latitude", "keyword"],}}}])return response.choices[0].message
3.2.3 使用示例
python代码解读复制代码prompt = "北京三里屯附近的咖啡"messages = [{"role": "system", "content": "你是一个地图通,你可以找到任何地址。"},{"role": "user", "content": prompt}
]
response = get_completion(messages)
if (response.content is None):  # 解决 OpenAI 的一个 400 bugresponse.content = ""
messages.append(response)  # 把大模型的回复加入到对话中
print("=====GPT回复=====")
print(response)# 如果返回的是函数调用结果,则打印出来
while (response.tool_calls is not None):# 1106 版新模型支持一次返回多个函数调用请求for tool_call in response.tool_calls:args = json.loads(tool_call.function.arguments)print(args)if (tool_call.function.name == "get_location_coordinate"):print("Call: get_location_coordinate")result = get_location_coordinate(**args)elif (tool_call.function.name == "search_nearby_pois"):print("Call: search_nearby_pois")result = search_nearby_pois(**args)print("=====函数返回=====")print(result)messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": tool_call.function.name,"content": str(result)  # 数值result 必须转成字符串})response = get_completion(messages)if (response.content is None):  # 解决 OpenAI 的一个 400 bugresponse.content = ""messages.append(response)  # 把大模型的回复加入到对话中print("=====最终回复=====")
print(response.content)

看下执行过程和结果:

image.png

(1)首先大模型识别到应该先调用get_location_coordinate函数获取经纬度。

(2)get_location_coordinate执行结果给到大模型,大模型识别到下一步应该调用search_nearby_pois

(3)search_nearby_pois执行结果给到大模型,大模型识别到不需要调用其它函数,用自然语言组织了最终答案。

3.2.4 完整代码
python代码解读复制代码import json
import os
import openai
import requests
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())amap_key = os.getenv('AMAP_KEY')def get_completion(messages, model="gpt-3.5-turbo-1106"):response = openai.chat.completions.create(model=model,messages=messages,temperature=0,max_tokens=1024,tools=[{"type": "function","function": {"name": "get_location_coordinate","description": "根据POI名称,获得POI的经纬度坐标","parameters": {"type": "object","properties": {"location": {"type": "string","description": "POI名称,必须是中文",},"city": {"type": "string","description": "POI所在的城市名,必须是中文",}},"required": ["location", "city"],}}},{"type": "function","function": {"name": "search_nearby_pois","description": "搜索给定坐标附近的poi","parameters": {"type": "object","properties": {"longitude": {"type": "string","description": "中心点的经度",},"latitude": {"type": "string","description": "中心点的纬度",},"keyword": {"type": "string","description": "目标poi的关键字",}},"required": ["longitude", "latitude", "keyword"],}}}])return response.choices[0].messagedef get_location_coordinate(location, city="北京"):url = f"https://restapi.amap.com/v5/place/text?key={amap_key}&keywords={location}&region={city}"print(url)r = requests.get(url)result = r.json()if "pois" in result and result["pois"]:return result["pois"][0]return Nonedef search_nearby_pois(longitude, latitude, keyword):url = f"https://restapi.amap.com/v5/place/around?key={amap_key}&keywords={keyword}&location={longitude},{latitude}"print(url)r = requests.get(url)result = r.json()ans = ""if "pois" in result and result["pois"]:for i in range(min(3, len(result["pois"]))):name = result["pois"][i]["name"]address = result["pois"][i]["address"]distance = result["pois"][i]["distance"]ans += f"{name}\n{address}\n距离:{distance}米\n\n"return ansprompt = "北京三里屯附近的咖啡"messages = [{"role": "system", "content": "你是一个地图通,你可以找到任何地址。"},{"role": "user", "content": prompt}
]
response = get_completion(messages)
if (response.content is None):  # 解决 OpenAI 的一个 400 bugresponse.content = ""
messages.append(response)  # 把大模型的回复加入到对话中
print("=====GPT回复=====")
print(response)# 如果返回的是函数调用结果,则打印出来
while (response.tool_calls is not None):# 1106 版新模型支持一次返回多个函数调用请求for tool_call in response.tool_calls:args = json.loads(tool_call.function.arguments)print("参数:", args)if (tool_call.function.name == "get_location_coordinate"):print("Call: get_location_coordinate")result = get_location_coordinate(**args)elif (tool_call.function.name == "search_nearby_pois"):print("Call: search_nearby_pois")result = search_nearby_pois(**args)print("=====函数返回=====")print(result)messages.append({"tool_call_id": tool_call.id,  # 用于标识函数调用的 ID"role": "tool","name": tool_call.function.name,"content": str(result)  # 数值result 必须转成字符串})response = get_completion(messages)if (response.content is None):  # 解决 OpenAI 的一个 400 bugresponse.content = ""print("=====GPT回复2=====")print(response)messages.append(response)  # 把大模型的回复加入到对话中print("=====最终回复=====")
print(response.content)

4. 总结

通过本文的两个实战示例,是否已经对Function calling有了一个初步的认识?

  • 其实就是将函数说明组织成json形式告诉大模型。其中最重要的函数和参数描述,是该函数的prompt,大模型通过这个描述来确定用户的输入是否匹配该函数,是否召回该函数。
  • 大模型如果召回了某个函数,那么我们就可以在本地去解析函数名和参数去使用,从而完成大模型与外部世界的连接。

人工智能\大模型入门学习大礼包》,可以关注工棕耗:大模型星球
回🎀复:11即🉑️精准或取❕!

这篇关于【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146799

相关文章

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Spring Boot 整合 MyBatis 连接数据库及常见问题

《SpringBoot整合MyBatis连接数据库及常见问题》MyBatis是一个优秀的持久层框架,支持定制化SQL、存储过程以及高级映射,下面详细介绍如何在SpringBoot项目中整合My... 目录一、基本配置1. 添加依赖2. 配置数据库连接二、项目结构三、核心组件实现(示例)1. 实体类2. Ma

电脑win32spl.dll文件丢失咋办? win32spl.dll丢失无法连接打印机修复技巧

《电脑win32spl.dll文件丢失咋办?win32spl.dll丢失无法连接打印机修复技巧》电脑突然提示win32spl.dll文件丢失,打印机死活连不上,今天就来给大家详细讲解一下这个问题的解... 不知道大家在使用电脑的时候是否遇到过关于win32spl.dll文件丢失的问题,win32spl.dl

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库