好好学习第三天:RNN与股票预测

2024-03-20 03:50

本文主要是介绍好好学习第三天:RNN与股票预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


​>- 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/k-vYaC8l7uxX51WoypLkTw) 中的学习记录博客
>- 参考文章地址: [🔗深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天](https://mtyjkh.blog.csdn.net/article/details/117752046)

活动地址:CSDN21天学习挑战赛

一、RNN

RNN(Recurrent Neural Network)循环神经网络是一种对序列数据建模的神经网络。RNN不同于前向神经网络,它的层内、层与层之间的信息可以双向传递,更高效地存储信息,利用更复杂的方法来更新规则,通常用于处理信息序列的任务

RNN在自然语言处理、图像识别、语音识别、上下文的预测、在线交易预测、实时翻译等领域得到了大量的应用。

RNN主要用来处理序列数据,在传统的神经网络模型中,是从输入层到隐含层再到输出层,每层内的节点之间无连接,循环神经网络中一个当前神经元的输出与前面的输出也有关,网络会对前面的信息进行记忆并应用于当前神经元的计算中,隐藏层之间的节点是有连接的,并且隐藏层的输入不仅包含输入层的输出还包含上一时刻隐藏层的输出。理论上,RNN可以对任意长度的序列数据进行处理。
 

 RNN缺陷:长期依赖问题,产生长跨度依赖问题。

RNN分类:

(1)输入一个输出多个,例如输入一张图像,输出这张图像的描述信息。

(2)输入是多个,输出则是一个,例如输入段话,输出这段话的情感。

(3)输入是多个,输出也是多个,如机器翻译输入一段话输出也是一段话(多个词)。

(4)多个输入和输出是同步的,例如进行字幕标记。

二、过程

1.导入库

import os,math
from tensorflow.keras.layers import Dropout, Dense, SimpleRNN
from sklearn.preprocessing   import MinMaxScaler
from sklearn                 import metrics
import numpy             as np
import pandas            as pd
import tensorflow        as tf
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

2.导入数据

data = pd.read_csv('SH600519.csv')  # 读取股票文件data

 

3.划分训练集和测试集

iloc[行索引位置,列索引位置]
 

"""
前(2426-300=2126)天的开盘价作为训练集,表格从0开始计数,2:3 是提取[2:3)列,前闭后开,故提取出C列开盘价
后300天的开盘价作为测试集
"""
training_set = data.iloc[0:2426 - 300, 2:3].values  
test_set = data.iloc[2426 - 300:, 2:3].values  

4.归一化

MinMaxScaler()函数在preprocessing模块,用来实现数据的归一化,即把数据映射到 [ 0,1 ] 。

sc           = MinMaxScaler(feature_range=(0, 1))
training_set = sc.fit_transform(training_set)
test_set     = sc.transform(test_set) 

 5.设置测试集训练集

x_train = []
y_train = []x_test = []
y_test = []"""
使用前60天的开盘价作为输入特征x_train第61天的开盘价作为输入标签y_trainfor循环共构建2426-300-60=2066组训练数据。共构建300-60=260组测试数据
"""
for i in range(60, len(training_set)):x_train.append(training_set[i - 60:i, 0])y_train.append(training_set[i, 0])for i in range(60, len(test_set)):x_test.append(test_set[i - 60:i, 0])y_test.append(test_set[i, 0])# 对训练集进行打乱
np.random.seed(7)
np.random.shuffle(x_train)
np.random.seed(7)
np.random.shuffle(y_train)
tf.random.set_random_seed(7)  #此句修改

6.调整数据

"""
将训练数据调整为数组(array)调整后的形状:
x_train:(2066, 60, 1)
y_train:(2066,)
x_test :(240, 60, 1)
y_test :(240,)
"""
x_train, y_train = np.array(x_train), np.array(y_train) # x_train形状为:(2066, 60, 1)
x_test,  y_test  = np.array(x_test),  np.array(y_test)"""
输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]
"""
x_train = np.reshape(x_train, (x_train.shape[0], 60, 1))
x_test  = np.reshape(x_test,  (x_test.shape[0], 60, 1))

7.构建模型

model = tf.keras.Sequential([SimpleRNN(100, return_sequences=True), #布尔值。是返回输出序列中的最后一个输出,还是全部序列。Dropout(0.1),                         #防止过拟合SimpleRNN(100),Dropout(0.1),Dense(1)
])

8.激活模型

# 该应用只观测loss数值,不观测准确率,所以删去metrics选项,一会在每个epoch迭代显示时只显示loss值
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),loss='mean_squared_error')  # 损失函数用均方误差

9.模型训练

history = model.fit(x_train, y_train, batch_size=64, epochs=20, validation_data=(x_test, y_test), validation_freq=1)                  #测试的epoch间隔数model.summary()

10.可视化——绘制loss图

plt.plot(history.history['loss']    , label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss by K同学啊')
plt.legend()
plt.show()

 11.预测

X=scaler.inverse_transform(X)

将标准化后的数据转换为原始数据。

predicted_stock_price = model.predict(x_test)                       # 测试集输入模型进行预测
predicted_stock_price = sc.inverse_transform(predicted_stock_price) # 对预测数据还原---从(0,1)反归一化到原始范围
real_stock_price = sc.inverse_transform(test_set[60:])              # 对真实数据还原---从(0,1)反归一化到原始范围# 画出真实数据和预测数据的对比曲线
plt.plot(real_stock_price, color='red', label='Stock Price')
plt.plot(predicted_stock_price, color='blue', label='Predicted Stock Price')
plt.title('Stock Price Prediction by K同学啊')
plt.xlabel('Time')
plt.ylabel('Stock Price')
plt.legend()
plt.show()

12.评估

"""
MSE  :均方误差    ----->  预测值减真实值求平方后求均值
RMSE :均方根误差  ----->  对均方误差开方
MAE  :平均绝对误差----->  预测值减真实值求绝对值后求均值
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量详细介绍可以参考文章:https://blog.csdn.net/qq_38251616/article/details/107997435
"""
MSE   = metrics.mean_squared_error(predicted_stock_price, real_stock_price)
RMSE  = metrics.mean_squared_error(predicted_stock_price, real_stock_price)**0.5
MAE   = metrics.mean_absolute_error(predicted_stock_price, real_stock_price)
R2    = metrics.r2_score(predicted_stock_price, real_stock_price)print('均方误差: %.5f' % MSE)
print('均方根误差: %.5f' % RMSE)
print('平均绝对误差: %.5f' % MAE)
print('R2: %.5f' % R2)

这篇关于好好学习第三天:RNN与股票预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828196

相关文章

Java基础回顾系列-第三天-Lambda表达式

Java基础回顾系列-第三天-Lambda表达式 Lambda表达式方法引用引用静态方法引用实例化对象的方法引用特定类型的方法引用构造方法 内建函数式接口Function基础接口DoubleToIntFunction 类型转换接口Consumer消费型函数式接口Supplier供给型函数式接口Predicate断言型函数式接口 Stream API 该篇博文需重点了解:内建函数式

股票数据接口-陈科肇

陈科肇 新浪财经 sz-深圳sh-上海历史分价表:http://market.finance.sina.com.cn/pricehis.php?symbol=sz000506&startdate=2016-12-27&enddate=2016-12-27历史成交明细(当日成交明细):http://vip.stock.finance.sina.com.cn/quotes_service/v

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

笔试强训,[NOIP2002普及组]过河卒牛客.游游的水果大礼包牛客.买卖股票的最好时机(二)二叉树非递归前序遍历

目录 [NOIP2002普及组]过河卒 牛客.游游的水果大礼包 牛客.买卖股票的最好时机(二) 二叉树非递归前序遍历 [NOIP2002普及组]过河卒 题里面给的提示很有用,那个马的关系,后面就注意,dp需要作为long的类型。 import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息publ

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测 目录 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SS

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode:486. 预测赢家 一、递归 注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^