Transformer的前世今生 day04(ELMO

2024-03-20 01:12

本文主要是介绍Transformer的前世今生 day04(ELMO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ELMO

前情回顾

  • NNLM模型:主要任务是在预测下一个词,副产品是词向量
  • Word2Vec模型:主要任务是生成词向量
    • CBOW:训练目标是根据上下文预测目标词
    • Skip-gram:训练目标是根据目标词预测上下文词

ELMO模型的流程

  • 针对Word2Vec模型的词向量不能表示多义词的问题,产生了ELMO模型,模型图如下:
    在这里插入图片描述
  • 通过不只是训练单单一个单词的Q矩阵,而是把这个词的上下文信息也融入到这个Q矩阵中,从而解决一词多义的问题
  • 注意:左侧的LSTM是融入上文信息,右侧的LSTM是融入下文信息。E已经是将独热编码经过一层Q矩阵得到的
  • 在我们做具体任务T时,会先将E1、E2、E3三层的特征信息做一个叠加之后,得到新的词向量K,其中(E2、E3为双向的句法和语义特征),所以K1为第一个词的词向量,且包含了这个词的单词特征、句法特征、语义特征
  • 注意:在Word2Vec中,只是单纯将几个连续的单词按顺序拼接输入,所以只有这个单词的词向量,并没有上下文信息的叠加

ELMO模型怎么使用

  • 虽然同一个词的单词特征相同,但是在不同句子中的上下文信息会不同,也就代表着最后的词向量K会不同,如下:
    在这里插入图片描述
  • 我们可以用训练好的ELMO模型,去掉该模型针对任务的改造部分,比如只选用T层往下的部分,用它来替换下图其他任务中的W到e的这一部分,即替换之前Word2Vec预训练部分,从而实现ELMO模型的预训练效果,解决一词多义问题:
    在这里插入图片描述

参考文献

  1. 08 ELMo模型(双向LSTM模型解决词向量多义问题)

这篇关于Transformer的前世今生 day04(ELMO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827829

相关文章

ja-netfilter的前世今生和非对称加密的欺骗原理

文章目录 ja-netfilter起源官网插件插件配置文件插件的综合应用更多用法 非对称加密欺骗原理非对称加密和数字证书激活过程和欺骗手段分析代码示例第一步:生成自签名证书脚本第二步:使用自签名证书对产品激活信息进行签名 样例数据样例激活码(注:用于代码演示,直接粘贴到JetBrains 家 IDE 中无法完成激活!不用试,肯定提示无效,无法激活!!)样例power.conf(配合ja-ne

Anti-alias的前世今生

原文: http://www.cnblogs.com/gongminmin/archive/2011/05/16/2047506.html Anti-alias,简称AA,在图形学中广泛地用于提升渲染质量。经过几十年的发展,AA也从离线渲染逐步普及到了实时渲染的领域。本系列文章将总结一下在实时渲染中使用的AA方法的前世和今生。本片集中讨论硬件提供的AA方法。 图1. 一个像素内部的采样

Transformer从零详细解读

Transformer从零详细解读 一、从全局角度概况Transformer ​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU” ​ 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器) ​ 在此基础上我们再进一步细化TRM的

LLM模型:代码讲解Transformer运行原理

视频讲解、获取源码:LLM模型:代码讲解Transformer运行原理(1)_哔哩哔哩_bilibili 1 训练保存模型文件 2 模型推理 3 推理代码 import torchimport tiktokenfrom wutenglan_model import WutenglanModelimport pyttsx3# 设置设备为CUDA(如果可用),否则使用CPU#

逐行讲解Transformer的代码实现和原理讲解:计算交叉熵损失

LLM模型:Transformer代码实现和原理讲解:前馈神经网络_哔哩哔哩_bilibili 1 计算交叉熵目的 计算 loss = F.cross_entropy(input=linear_predictions_reshaped, target=targets_reshaped) 的目的是为了评估模型预测结果与实际标签之间的差距,并提供一个量化指标,用于指导模型的训练过程。具体来说,交叉

深度学习每周学习总结N9:transformer复现

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 多头注意力机制前馈传播位置编码编码层解码层Transformer模型构建使用示例 本文为TR3学习打卡,为了保证记录顺序我这里写为N9 总结: 之前有学习过文本预处理的环节,对文本处理的主要方式有以下三种: 1:词袋模型(one-hot编码) 2:TF-I

RNN发展(RNN/LSTM/GRU/GNMT/transformer/RWKV)

RNN到GRU参考: https://blog.csdn.net/weixin_36378508/article/details/115101779 tRANSFORMERS参考: seq2seq到attention到transformer理解 GNMT 2016年9月 谷歌,基于神经网络的翻译系统(GNMT),并宣称GNMT在多个主要语言对的翻译中将翻译误差降低了55%-85%以上, G

ModuleNotFoundError: No module named ‘diffusers.models.dual_transformer_2d‘解决方法

Python应用运行报错,部分错误信息如下: Traceback (most recent call last): File “\pipelines_ootd\unet_vton_2d_blocks.py”, line 29, in from diffusers.models.dual_transformer_2d import DualTransformer2DModel ModuleNotF

用最简单的话来解释大模型中的Transformer架构

开篇 我个人的观点是要想系统而又透彻地理解 Transformer,至少要遵循下面这样一个思路(步骤): 理解NLP基础 在探讨Transformers之前,了解自然语言处理(NLP)的一些基本知识至关重要。NLP使计算机能够理解和生成自然语言,文本的表征是其核心任务之一。传统的语言模型往往依赖于递归神经网络(RNN)处理序列数据,但RNN在长序列中表现较差。为了解决这一问题,必须引入先

【大规模语言模型:从理论到实践】Transformer中PositionalEncoder详解

书籍链接:大规模语言模型:从理论到实践 第15页位置表示层代码详解 1. 构造函数 __init__() def __init__(self, d_model, max_seq_len=80):super().__init__()self.d_model = d_model # 嵌入的维度(embedding dimension) d_model: 表示输入词向量的维度。max_se