TrustGeo代码理解(二)sublayers.py(layer.py的支持文件)

2024-03-19 23:12

本文主要是介绍TrustGeo代码理解(二)sublayers.py(layer.py的支持文件),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码链接:RIPGeo代码实现

├── lib # 包含模型(model)实现文件
    │        |── layers.py # 注意力机制的代码。
    │        |── model.py # TrustGeo的核心源代码。
    │        |── sublayers.py # layer.py的支持文件。
    │        |── utils.py # 辅助函数。

一、导入模块

import torch
import torch.nn as nn
import torch.nn.functional as F

这段代码是一个简单的神经网络的定义,用于深度学习任务。

1、import torch:导入 PyTorch 库,提供张量(tensor)等深度学习操作的支持。

2、import torch.nn as nn:导入 PyTorch 中的神经网络模块,包括定义神经网络层的基本类。

3、import torch.nn.functional as F:导入 PyTorch 中的函数模块,包括一些激活函数、损失函数等。

二、ScaledDotProductAttention类定义(NN模型)

class ScaledDotProductAttention(nn.Module):''' Scaled Dot-Product Attention '''def __init__(self, temperature, attn_dropout=0.1):super().__init__()self.temperature = temperatureself.dropout = nn.Dropout(attn_dropout)def forward(self, q, k, v, mask=None):attn = torch.matmul(q / self.temperature, k.transpose(2, 3))if mask is not None:attn = attn.masked_fill(mask == 0, -1e9)attn = self.dropout(F.softmax(attn, dim=-1))# attn[attn <= torch.quantile(attn, 0.8)] = 0# attn = torch.where(attn <= torch.mean(attn)*0.6, torch.full_like(attn, 0), attn)output = torch.matmul(attn, v)return output, attn

这段代码定义了一个 Scaled Dot-Product Attention 模块,这是 Transformer 模型中注意力机制的一部分。这个模块实现了 Scaled Dot-Product Attention 的计算,是 Transformer 模型中实现自注意力机制的关键组成部分。

分为几个部分展开描述:

(一)__init__()

def __init__(self, temperature, attn_dropout=0.1):super().__init__()self.temperature = temperatureself.dropout = nn.Dropout(attn_dropout)

这是一个简单的自注意力(Self-Attention)模块的定义,其中包含了一个温度参数(temperature)和一个注意力丢弃率参数(attn_dropout)。主要用于实现一个简单的自注意力机制,其中包括对输入进行缩放(通过温度参数)以及应用注意力丢弃率。在实际应用中,这样的自注意力机制通常用于图神经网络等任务中,以捕捉输入序列中的重要信息。

1、def __init__(self, temperature, attn_dropout=0.1):这是类的构造函数,用于初始化SimpleAttention类的实例。参数包括temperatureattn_dropout,分别表示温度参数和注意力丢弃率参数。

2、super().__init__():调用父类的构造函数,确保正确地初始化继承自父类的属性。

3、self.temperature = temperature:将输入的temperature参数存储为类的属性,后续在注意力计算中使用。

4、self.dropout = nn.Dropout(attn_dropout):创建了一个 PyTorch 的 nn.Dropout 层,用于在注意力计算中应用丢弃率。attn_dropout 是一个可选参数,默认值为 0.1。

(二)forward()

def forward(self, q, k, v, mask=None):attn = torch.matmul(q / self.temperature, k.transpose(2, 3))if mask is not None:attn = attn.masked_fill(mask == 0, -1e9)attn = self.dropout(F.softmax(attn, dim=-1))# attn[attn <= torch.quantile(attn, 0.8)] = 0# attn = torch.where(attn <= torch.mean(attn)*0.6, torch.full_like(attn, 0), attn)output = torch.matmul(attn, v)return output, attn

这是一个用于执行自注意力机制(Self-Attention)的前向传播函数。函数的整体功能是计算自注意力机制的输出,其中查询(q)、键(k)、值(v)是输入的特征表示。掩码(mask)是一个可选参数,用于屏蔽输入序列中的某些位置。通过计算注意力分数、应用 Softmax 函数和使用 dropout 进行正则化,该函数产生了自注意力的输出和相应的注意力权重。
该部分实现参考如何理解attention中的Q、K、V?_gpt q,k,v大小-CSDN博客

1、def forward(self, q, k, v, mask=None):定义了前向传播函数,该函数接受查询(q)、键(k)、值(v)以及可选的掩码(mask)作为输入。

2、attn = torch.matmul(q / self.temperature, k.transpose(2, 3)):计算注意力分数。将查询和键进行点积操作,然后除以温度(temperature)以缩放注意力。这里采用了矩阵相乘的形式。

3、if mask is not None:检查是

这篇关于TrustGeo代码理解(二)sublayers.py(layer.py的支持文件)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827530

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.