opencv之图像直方图均衡化cv2.equalizeHist

2024-03-19 20:10

本文主要是介绍opencv之图像直方图均衡化cv2.equalizeHist,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、图像直方图

二、绘制直方图

三、直方图均衡化

四、直方图均衡化效果展示


 

一、图像直方图

  图像的构成是有像素点构成的,每个像素点的值代表着该点的颜色(灰度图或者彩色图)。所谓直方图就是对图像的中的这些像素点的值进行统计,得到一个统一的整体的灰度概念直方图的好处就在于可以清晰了解图像的整体灰度分布,这对于后面依据直方图处理图像来说至关重要。

一般情况下直方图都是灰度图像,直方图x轴是灰度值(一般0~255),y轴就是图像中每一个灰度级对应的像素点的个数。

 

二、绘制直方图

①利用cv2.calcHist()

  • 函数原型:cv2.calcHist(image,channels,mask,histSize,ranges)
  • image为待计算直方图的图像,需用[]包裹
  • channels指定待计算直方图的图像的哪一通道用来计算直方图,RGB图像可以指定[0,1,2],灰度图像只有[0],需用[]包裹,
  • mask为掩码,可以指定图像的范围,如果是全图,默认为none
  • hitsize为直方图的灰度级数,例如[0,255]一共256级,故参数为256,需用[]包裹
  • range为像素值范围,为[0,255]
  • 返回值为hist,直方图;接着使用
    matplotlib.pyplot.plot(hist,color)进行绘制
hist = cv2.calcHist([res],[0],None,[256],[0,255])
plt.plot(hist,'r')
plt.show()

 

②使用plt.hist(),进行绘制

plt.hist(img,ravel(),hitsizes,ranges,color=)

  • img.ravel()将原图像的array数组转成一维的数组
  • hitsizes为直方图的灰度级数
  • ranges为灰度范围[0,255]
  • color是参数,需要使用color=''来指定颜色
plt.hist(res.ravel(), 256, [0, 256],color='r')
plt.show()

 

三、直方图均衡化

图像的直方图是对图像对比度效果上的一种处理,旨在使得图像整体效果均匀,黑与白之间的各个像素级之间的点更均匀一点。 

通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节

①实现方法

利用

cv2.equalizeHist(img),将要均衡化的原图像【要求是灰度图像】作为参数传入,则返回值即为均衡化后的图像。

原图像直方图

res = cv2.equalizeHist(res)

处理后的直方图

 

 

四、直方图均衡化效果展示

 

这篇关于opencv之图像直方图均衡化cv2.equalizeHist的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827099

相关文章

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

python中cv2.imdecode()与cv2.imencode()的使用小结

《python中cv2.imdecode()与cv2.imencode()的使用小结》本文介绍了cv2.imencode()和cv2.imdecode()函数的使用,文中通过示例代码介绍的非常详细,对... 目录1、图片路径带中文的读取和写入1.1 读取1.2 写入2、在网络中传输图片cv2.imencod

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

Verybot之OpenCV应用三:色标跟踪

下面的这个应用主要完成的是Verybot跟踪色标的功能,识别部分还是居于OpenCV编写,色标跟踪一般需要将图像的颜色模式进行转换,将RGB转换为HSV,因为对HSV格式下的图像进行识别时受光线的影响比较小,但是也有采用RGB模式来进行识别的情况,这种情况一般光线条件比较固定,背景跟识别物在颜色上很容易区分出来。         下面这个程序的流程大致是这样的:

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i