格式化数据#3:有关逻辑推理/语义的资源

2024-03-19 05:38

本文主要是介绍格式化数据#3:有关逻辑推理/语义的资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者搜集的有关逻辑推理/语义的资源,最新版本请看:http://lore.chuci.info/taurenshaman/json/3b001fbce2544abb8fe8197a5f8b2a4c


{"title": "Project/Library: Logic/Semantic","items": [{"title": "Euler","description": "Euler is an inference engine supporting logic based proofs. It is a backward-chaining reasoner enhanced with Euler path detection. ","tags": "逻辑推理","language": null,"license": null,"url": "http://eulersharp.sourceforge.net/","reference": null},{"title": "RomanticWeb:.net中的RDF-对象映射库","description": "RomanticWeb is the world’s first ORM class solution for graph-based data written fully in C# that allows developers to work with the RDF data in a way the would work with any other data in an object oriented manner. This can be achieved by creating data models that can then be mapped to RDF statements in a fully transparent way. RomanticWeb is also the first solution that in conjuction with it’s mapping abilities allows to query for the data in a native .net way with LINQ. Developers can use their natural approach while working with data and objects and query for them with strongly typed queries, which are then translated into a SPARQL Protocol And RDF Query Language.","tags": "RDF; Semantic Web","language": "C#","license": "BSD","url": "http://github.com/MakoLab/RomanticWeb","reference": ["http://romanticweb.net"]},{"title": ".net下的开源RDF框架:dotNetRDF","description": "The aim of the dotNetRDF Project is to create an Open Source .Net Library using the latest versions of the .Net Framework to provide a powerful and easy to use API for working with RDF, SPARQL and the Semantic Web. Our primary aim is to provide an effective way for working with reasonable amounts of RDF in .Net.","tags": "RDF; Semantic Web","language": "C#","license": "MIT","url": "https://bitbucket.org/dotnetrdf/dotnetrdf","reference": ["http://www.dotnetrdf.org/"]},{"title": "SemWeb","description": "SemWeb is a .NET library for working with Resource Description Framework (RDF) data. It provides classes for reading, writing, manipulating, and querying RDF.","tags": "RDF","language": "C#","license": null,"url": "http://razor.occams.info/code/semweb/","reference": null},{"title": "Redland RDF Application Framework","description": "The Redland RDF Application Framework is a set of free software libraries that provide support for RDF. It provides parser for RDF/XML, Turtle, N-triples, Atom, RSS; has a SPARQL and GRDDL implementation, and has language interfaces to C#, Python, Obj-C, Perl, PHP, Ruby, Java and Tcl","tags": "RDF; Turtle","language": null,"license": null,"url": "http://librdf.org/","reference": null},{"title": "Python的自然语言工具包NLTK(Natural Language Toolkit)","description": "NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.","tags": "natural language processing; text analytics","language": "Python","license": "Apache License Version 2.0","url": "https://github.com/nltk/nltk","reference": ["http://www.nltk.org/"]},{"title": "LinqToRdf","description": "LinqToRdf is a Semantic Web framework for .NET. It provides an easy way to integrate Semantic Web queries into your software. At the core of the system sits a LINQ query provider (like LINQ to SQL) that converts your queries into the SPARQL query language. You don't have to know that much SPARQL or RDF to be able to use it. It also provides a UML-style design surface allowing you to create RDF files, and to generate compatible C# code to work with the RDF.","tags": "LINQ; RDF","language": "C#","license": null,"url": "http://code.google.com/p/linqtordf/","reference": null},{"title": "雅虎的开源语义数据Web爬虫:Anthelion","description": "Anthelion is a plugin for Apache Nutch to crawl semantic annotations within HTML pages. Anthelion是为了更好地爬取嵌在HTML页面中的结构化数据而设计的,它采用了一种全新的方法来爬取含有丰富数据的页面上的内容:将线上学习和Bandit探索方法有效地结合起来,根据页面上下文以及从之前页面提取到的元数据反馈预测Web页面的数据丰富程度。 这种方法明显优于主题爬取(Focused Crawling)目前所采用的其他技术,极大地提升了爬取效率。","tags": "雅虎; 语义数据; Web爬虫","language": "Java","license": "Apache License Version 2.0","url": "https://github.com/yahoo/anthelion","reference": ["https://labs.yahoo.com/publications/6702/focused-crawling-structured-data"]},{"title": "语义网本体翻译计划","description": "Storing ontologies/vocabularies from the web. Wish anybody can translate some of them.","tags": "语义网; 本体","language": "RDF; Turtle","license": null,"url": "https://github.com/taurenshaman/semantic-web","reference": null},{"title": "语义图片(Semantic Image)","description": "A tool to write/read semantic information to images.","tags": "pngcs","language": "C#","license": null,"url": "https://github.com/taurenshaman/SemanticImage","reference": null},{"title": "微软的牛津计划","description": "微软牛津计划提供一组基于REST架构的API和SDK工具包,帮助开发者轻轻松松使用微软的自然数据理解能力为自己的解决方案增加智能服务。","tags": "SDK; API","language": null,"license": null,"url": "https://cn.projectoxford.ai","reference": null},{"title": "Open AI","description": "OpenAI is a non-profit artificial intelligence research company. Our goal is to advance digital intelligence in the way that is most likely to benefit humanity as a whole, unconstrained by a need to generate financial return. Since our research is free from financial obligations, we can better focus on a positive human impact. We believe AI should be an extension of individual human wills and, in the spirit of liberty, as broadly and evenly distributed as possible. The outcome of this venture is uncertain and the work is difficult, but we believe the goal and the structure are right. We hope this is what matters most to the best in the field.","tags": "non-profit artificial intelligence research company","language": null,"license": null,"url": "https://openai.com","reference": null},{"title": "楚辞","description": "基于语义网的中文开放知识平台","tags": "中文; 语义; 知识平台","language": null,"license": null,"url": "http://www.chuci.info","reference": null},{"title": "Semantic Web","description": "In addition to the classic “Web of documents” W3C is helping to build a technology stack to support a “Web of data,” the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by technologies such as RDF, SPARQL, OWL, and SKOS.","tags": "W3C; RDF; SPARQL; OWL; SKOS","language": null,"license": null,"url": "http://www.w3.org/standards/semanticweb/","reference": null},{"title": "DOAP","description": "Description of a project","tags": "DOAP","language": null,"license": null,"url": "http://trac.usefulinc.com/doap","reference": null}],"template": "bookmark"
}


这篇关于格式化数据#3:有关逻辑推理/语义的资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824967

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数