格式化数据#3:有关逻辑推理/语义的资源

2024-03-19 05:38

本文主要是介绍格式化数据#3:有关逻辑推理/语义的资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者搜集的有关逻辑推理/语义的资源,最新版本请看:http://lore.chuci.info/taurenshaman/json/3b001fbce2544abb8fe8197a5f8b2a4c


{"title": "Project/Library: Logic/Semantic","items": [{"title": "Euler","description": "Euler is an inference engine supporting logic based proofs. It is a backward-chaining reasoner enhanced with Euler path detection. ","tags": "逻辑推理","language": null,"license": null,"url": "http://eulersharp.sourceforge.net/","reference": null},{"title": "RomanticWeb:.net中的RDF-对象映射库","description": "RomanticWeb is the world’s first ORM class solution for graph-based data written fully in C# that allows developers to work with the RDF data in a way the would work with any other data in an object oriented manner. This can be achieved by creating data models that can then be mapped to RDF statements in a fully transparent way. RomanticWeb is also the first solution that in conjuction with it’s mapping abilities allows to query for the data in a native .net way with LINQ. Developers can use their natural approach while working with data and objects and query for them with strongly typed queries, which are then translated into a SPARQL Protocol And RDF Query Language.","tags": "RDF; Semantic Web","language": "C#","license": "BSD","url": "http://github.com/MakoLab/RomanticWeb","reference": ["http://romanticweb.net"]},{"title": ".net下的开源RDF框架:dotNetRDF","description": "The aim of the dotNetRDF Project is to create an Open Source .Net Library using the latest versions of the .Net Framework to provide a powerful and easy to use API for working with RDF, SPARQL and the Semantic Web. Our primary aim is to provide an effective way for working with reasonable amounts of RDF in .Net.","tags": "RDF; Semantic Web","language": "C#","license": "MIT","url": "https://bitbucket.org/dotnetrdf/dotnetrdf","reference": ["http://www.dotnetrdf.org/"]},{"title": "SemWeb","description": "SemWeb is a .NET library for working with Resource Description Framework (RDF) data. It provides classes for reading, writing, manipulating, and querying RDF.","tags": "RDF","language": "C#","license": null,"url": "http://razor.occams.info/code/semweb/","reference": null},{"title": "Redland RDF Application Framework","description": "The Redland RDF Application Framework is a set of free software libraries that provide support for RDF. It provides parser for RDF/XML, Turtle, N-triples, Atom, RSS; has a SPARQL and GRDDL implementation, and has language interfaces to C#, Python, Obj-C, Perl, PHP, Ruby, Java and Tcl","tags": "RDF; Turtle","language": null,"license": null,"url": "http://librdf.org/","reference": null},{"title": "Python的自然语言工具包NLTK(Natural Language Toolkit)","description": "NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.","tags": "natural language processing; text analytics","language": "Python","license": "Apache License Version 2.0","url": "https://github.com/nltk/nltk","reference": ["http://www.nltk.org/"]},{"title": "LinqToRdf","description": "LinqToRdf is a Semantic Web framework for .NET. It provides an easy way to integrate Semantic Web queries into your software. At the core of the system sits a LINQ query provider (like LINQ to SQL) that converts your queries into the SPARQL query language. You don't have to know that much SPARQL or RDF to be able to use it. It also provides a UML-style design surface allowing you to create RDF files, and to generate compatible C# code to work with the RDF.","tags": "LINQ; RDF","language": "C#","license": null,"url": "http://code.google.com/p/linqtordf/","reference": null},{"title": "雅虎的开源语义数据Web爬虫:Anthelion","description": "Anthelion is a plugin for Apache Nutch to crawl semantic annotations within HTML pages. Anthelion是为了更好地爬取嵌在HTML页面中的结构化数据而设计的,它采用了一种全新的方法来爬取含有丰富数据的页面上的内容:将线上学习和Bandit探索方法有效地结合起来,根据页面上下文以及从之前页面提取到的元数据反馈预测Web页面的数据丰富程度。 这种方法明显优于主题爬取(Focused Crawling)目前所采用的其他技术,极大地提升了爬取效率。","tags": "雅虎; 语义数据; Web爬虫","language": "Java","license": "Apache License Version 2.0","url": "https://github.com/yahoo/anthelion","reference": ["https://labs.yahoo.com/publications/6702/focused-crawling-structured-data"]},{"title": "语义网本体翻译计划","description": "Storing ontologies/vocabularies from the web. Wish anybody can translate some of them.","tags": "语义网; 本体","language": "RDF; Turtle","license": null,"url": "https://github.com/taurenshaman/semantic-web","reference": null},{"title": "语义图片(Semantic Image)","description": "A tool to write/read semantic information to images.","tags": "pngcs","language": "C#","license": null,"url": "https://github.com/taurenshaman/SemanticImage","reference": null},{"title": "微软的牛津计划","description": "微软牛津计划提供一组基于REST架构的API和SDK工具包,帮助开发者轻轻松松使用微软的自然数据理解能力为自己的解决方案增加智能服务。","tags": "SDK; API","language": null,"license": null,"url": "https://cn.projectoxford.ai","reference": null},{"title": "Open AI","description": "OpenAI is a non-profit artificial intelligence research company. Our goal is to advance digital intelligence in the way that is most likely to benefit humanity as a whole, unconstrained by a need to generate financial return. Since our research is free from financial obligations, we can better focus on a positive human impact. We believe AI should be an extension of individual human wills and, in the spirit of liberty, as broadly and evenly distributed as possible. The outcome of this venture is uncertain and the work is difficult, but we believe the goal and the structure are right. We hope this is what matters most to the best in the field.","tags": "non-profit artificial intelligence research company","language": null,"license": null,"url": "https://openai.com","reference": null},{"title": "楚辞","description": "基于语义网的中文开放知识平台","tags": "中文; 语义; 知识平台","language": null,"license": null,"url": "http://www.chuci.info","reference": null},{"title": "Semantic Web","description": "In addition to the classic “Web of documents” W3C is helping to build a technology stack to support a “Web of data,” the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by technologies such as RDF, SPARQL, OWL, and SKOS.","tags": "W3C; RDF; SPARQL; OWL; SKOS","language": null,"license": null,"url": "http://www.w3.org/standards/semanticweb/","reference": null},{"title": "DOAP","description": "Description of a project","tags": "DOAP","language": null,"license": null,"url": "http://trac.usefulinc.com/doap","reference": null}],"template": "bookmark"
}


这篇关于格式化数据#3:有关逻辑推理/语义的资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824967

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者