格式化数据#3:有关逻辑推理/语义的资源

2024-03-19 05:38

本文主要是介绍格式化数据#3:有关逻辑推理/语义的资源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者搜集的有关逻辑推理/语义的资源,最新版本请看:http://lore.chuci.info/taurenshaman/json/3b001fbce2544abb8fe8197a5f8b2a4c


{"title": "Project/Library: Logic/Semantic","items": [{"title": "Euler","description": "Euler is an inference engine supporting logic based proofs. It is a backward-chaining reasoner enhanced with Euler path detection. ","tags": "逻辑推理","language": null,"license": null,"url": "http://eulersharp.sourceforge.net/","reference": null},{"title": "RomanticWeb:.net中的RDF-对象映射库","description": "RomanticWeb is the world’s first ORM class solution for graph-based data written fully in C# that allows developers to work with the RDF data in a way the would work with any other data in an object oriented manner. This can be achieved by creating data models that can then be mapped to RDF statements in a fully transparent way. RomanticWeb is also the first solution that in conjuction with it’s mapping abilities allows to query for the data in a native .net way with LINQ. Developers can use their natural approach while working with data and objects and query for them with strongly typed queries, which are then translated into a SPARQL Protocol And RDF Query Language.","tags": "RDF; Semantic Web","language": "C#","license": "BSD","url": "http://github.com/MakoLab/RomanticWeb","reference": ["http://romanticweb.net"]},{"title": ".net下的开源RDF框架:dotNetRDF","description": "The aim of the dotNetRDF Project is to create an Open Source .Net Library using the latest versions of the .Net Framework to provide a powerful and easy to use API for working with RDF, SPARQL and the Semantic Web. Our primary aim is to provide an effective way for working with reasonable amounts of RDF in .Net.","tags": "RDF; Semantic Web","language": "C#","license": "MIT","url": "https://bitbucket.org/dotnetrdf/dotnetrdf","reference": ["http://www.dotnetrdf.org/"]},{"title": "SemWeb","description": "SemWeb is a .NET library for working with Resource Description Framework (RDF) data. It provides classes for reading, writing, manipulating, and querying RDF.","tags": "RDF","language": "C#","license": null,"url": "http://razor.occams.info/code/semweb/","reference": null},{"title": "Redland RDF Application Framework","description": "The Redland RDF Application Framework is a set of free software libraries that provide support for RDF. It provides parser for RDF/XML, Turtle, N-triples, Atom, RSS; has a SPARQL and GRDDL implementation, and has language interfaces to C#, Python, Obj-C, Perl, PHP, Ruby, Java and Tcl","tags": "RDF; Turtle","language": null,"license": null,"url": "http://librdf.org/","reference": null},{"title": "Python的自然语言工具包NLTK(Natural Language Toolkit)","description": "NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, and an active discussion forum.","tags": "natural language processing; text analytics","language": "Python","license": "Apache License Version 2.0","url": "https://github.com/nltk/nltk","reference": ["http://www.nltk.org/"]},{"title": "LinqToRdf","description": "LinqToRdf is a Semantic Web framework for .NET. It provides an easy way to integrate Semantic Web queries into your software. At the core of the system sits a LINQ query provider (like LINQ to SQL) that converts your queries into the SPARQL query language. You don't have to know that much SPARQL or RDF to be able to use it. It also provides a UML-style design surface allowing you to create RDF files, and to generate compatible C# code to work with the RDF.","tags": "LINQ; RDF","language": "C#","license": null,"url": "http://code.google.com/p/linqtordf/","reference": null},{"title": "雅虎的开源语义数据Web爬虫:Anthelion","description": "Anthelion is a plugin for Apache Nutch to crawl semantic annotations within HTML pages. Anthelion是为了更好地爬取嵌在HTML页面中的结构化数据而设计的,它采用了一种全新的方法来爬取含有丰富数据的页面上的内容:将线上学习和Bandit探索方法有效地结合起来,根据页面上下文以及从之前页面提取到的元数据反馈预测Web页面的数据丰富程度。 这种方法明显优于主题爬取(Focused Crawling)目前所采用的其他技术,极大地提升了爬取效率。","tags": "雅虎; 语义数据; Web爬虫","language": "Java","license": "Apache License Version 2.0","url": "https://github.com/yahoo/anthelion","reference": ["https://labs.yahoo.com/publications/6702/focused-crawling-structured-data"]},{"title": "语义网本体翻译计划","description": "Storing ontologies/vocabularies from the web. Wish anybody can translate some of them.","tags": "语义网; 本体","language": "RDF; Turtle","license": null,"url": "https://github.com/taurenshaman/semantic-web","reference": null},{"title": "语义图片(Semantic Image)","description": "A tool to write/read semantic information to images.","tags": "pngcs","language": "C#","license": null,"url": "https://github.com/taurenshaman/SemanticImage","reference": null},{"title": "微软的牛津计划","description": "微软牛津计划提供一组基于REST架构的API和SDK工具包,帮助开发者轻轻松松使用微软的自然数据理解能力为自己的解决方案增加智能服务。","tags": "SDK; API","language": null,"license": null,"url": "https://cn.projectoxford.ai","reference": null},{"title": "Open AI","description": "OpenAI is a non-profit artificial intelligence research company. Our goal is to advance digital intelligence in the way that is most likely to benefit humanity as a whole, unconstrained by a need to generate financial return. Since our research is free from financial obligations, we can better focus on a positive human impact. We believe AI should be an extension of individual human wills and, in the spirit of liberty, as broadly and evenly distributed as possible. The outcome of this venture is uncertain and the work is difficult, but we believe the goal and the structure are right. We hope this is what matters most to the best in the field.","tags": "non-profit artificial intelligence research company","language": null,"license": null,"url": "https://openai.com","reference": null},{"title": "楚辞","description": "基于语义网的中文开放知识平台","tags": "中文; 语义; 知识平台","language": null,"license": null,"url": "http://www.chuci.info","reference": null},{"title": "Semantic Web","description": "In addition to the classic “Web of documents” W3C is helping to build a technology stack to support a “Web of data,” the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term “Semantic Web” refers to W3C’s vision of the Web of linked data. Semantic Web technologies enable people to create data stores on the Web, build vocabularies, and write rules for handling data. Linked data are empowered by technologies such as RDF, SPARQL, OWL, and SKOS.","tags": "W3C; RDF; SPARQL; OWL; SKOS","language": null,"license": null,"url": "http://www.w3.org/standards/semanticweb/","reference": null},{"title": "DOAP","description": "Description of a project","tags": "DOAP","language": null,"license": null,"url": "http://trac.usefulinc.com/doap","reference": null}],"template": "bookmark"
}


这篇关于格式化数据#3:有关逻辑推理/语义的资源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824967

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram