计算方法实验1:圆形镜面成像问题

2024-03-18 12:36

本文主要是介绍计算方法实验1:圆形镜面成像问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二维平面上的镜面反射示意图
在这里插入图片描述
在这里插入图片描述

Algorithm Description

T ( c o s θ , s i n θ ) T(cos\theta,sin\theta) T(cosθ,sinθ),则有
P T + Q T = ( P x − c o s θ ) 2 + s i n 2 θ + ( Q x − c o s θ ) 2 + ( Q y − s i n θ ) 2 PT+QT=\sqrt{(P_x-cos\theta)^2+sin^2\theta}+\sqrt{(Q_x-cos\theta)^2+(Q_y-sin\theta)^2} PT+QT=(Pxcosθ)2+sin2θ +(Qxcosθ)2+(Qysinθ)2
P T + Q T = P x 2 − 2 P x c o s θ + 1 + Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ PT+QT=\sqrt{P_x^2-2P_xcos\theta+1}+\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta} PT+QT=Px22Pxcosθ+1 +Qx2+Qy2+12Qxcosθ2Qysinθ
由费马原理,光线沿 P T + Q T PT+QT PT+QT最短的路径传播,因此只需对上式求导求极小值点。关于 θ \theta θ求导得
P x s i n θ P x 2 − 2 P x c o s θ + 1 + Q x s i n θ − Q y c o s θ Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ \frac{P_xsin\theta}{\sqrt{P_x^2-2P_xcos\theta+1}}+\frac{Q_xsin\theta-Q_ycos\theta}{\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta}} Px22Pxcosθ+1 Pxsinθ+Qx2+Qy2+12Qxcosθ2Qysinθ QxsinθQycosθ
故只需用二分法解非线性方程
P x s i n θ Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ + ( Q x s i n θ − Q y c o s θ ) P x 2 − 2 P x c o s θ + 1 = 0 P_xsin\theta\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta}+(Q_xsin\theta-Q_ycos\theta)\sqrt{P_x^2-2P_xcos\theta+1}=0 PxsinθQx2+Qy2+12Qxcosθ2Qysinθ +(QxsinθQycosθ)Px22Pxcosθ+1 =0
T x = c o s θ T_x=cos\theta Tx=cosθ
T y = s i n θ T_y=sin\theta Ty=sinθ
由对称性易知
R x = 2 Q y − Q x t a n θ − k Q x + k ( 2 T x − Q x ) − 2 T y k − t a n θ Rx=\frac{2Q_y-Qxtan\theta -kQ_x +k(2Tx - Qx) - 2Ty}{k-tan\theta} Rx=ktanθ2QyQxtanθkQx+k(2TxQx)2Ty
R y = Q y − ( Q x − R x ) θ Ry=Qy-(Qx - Rx)\theta Ry=Qy(QxRx)θ

Code

#include<iostream>
#include<cmath>
#include <iomanip>
using namespace std;int main(int argc, char *argv[])
{if(argc != 4) {cout << "Usage: " << argv[0] << " <Px> <Qx> <Qy>\n";return 1;}long double Px = stold(argv[1]);long double Qx = stold(argv[2]);long double Qy = stold(argv[3]);if(Px >= -1 || Qx >= 0 || Qy <= 0 || Qx * Qx + Qy * Qy <= 1) {cout << "输入错误,Px应该小于-1,Qx应该小于0,Qy应该大于0,Qx^2+Qy^2应该大于1\n";return 1;}long double Tx = 0;long double Ty = 0;long double theta = 0;long double low = 3.14159265358979323 , high = 1.570796326794896;long double k = 0;while(1){theta = (low + high) / 2;long double eq1 = Px * sin(theta);long double eq2 = sqrt(Qx * Qx + Qy * Qy +1 - 2 * Qx * cos(theta) - 2 * Qy * sin(theta));long double eq3 = (Qx * sin(theta) - Qy * cos(theta));long double eq4 = sqrt(Px * Px -2 * Px * cos(theta) + 1);long double res = eq1 * eq2 + eq3 * eq4;long double absres = abs(res);if(absres <= 1e-7){Tx = cos(theta);Ty = sin(theta);k = 1 / tan(3.14159265358979323 - theta);break;}else if(res > 0){low = theta;}else{high = theta;}}long double eq5 = 2 * Qy - Qx * tan(theta) + k * (2 * Tx - Qx) - 2 * Ty;long double eq6 = k - tan(theta); long double Rx = eq5 / eq6;long double Ry = Qy - tan(theta) * (Qx - Rx);cout << "T = (" << fixed << setprecision(6) << Tx << " , " << fixed << setprecision(6) << Ty << ") , R = (" << fixed << setprecision(6) << Rx << " , " << fixed << setprecision(6) << Ry << ")";return 0;
}

Results

P = ( − 2 , 0 ) , Q = ( − 1 , 1 ) : T = ( − 0.885670 , 0.464316 ) , R = ( − 0.380057 , 0.674993 ) P = (-2, 0), Q = (-1, 1):T = (-0.885670, 0.464316), R = (-0.380057, 0.674993) P=(2,0),Q=(1,1):T=(0.885670,0.464316),R=(0.380057,0.674993)

P = ( − 10 , 0 ) , Q = ( − 2 , 1 ) : T = ( − 0.959312 , 0.282350 ) , R = ( 0.304214 , 0.321811 ) P = (-10, 0), Q = (-2, 1): T = (-0.959312, 0.282350), R = (0.304214, 0.321811) P=(10,0),Q=(2,1):T=(0.959312,0.282350),R=(0.304214,0.321811)

P = ( − 1.000001 , 0 ) , Q = ( − 2 , 2 ) : T = ( − 1.000000 , 0.000002 ) , R = ( 0.000007 , 1.999996 ) P = (-1.000001, 0), Q = (-2, 2):T = (-1.000000 , 0.000002) , R = (0.000007 , 1.999996) P=(1.000001,0),Q=(2,2):T=(1.000000,0.000002),R=(0.000007,1.999996)

P = ( − 2 , 0 ) , Q = ( − 1 , 0.000001 ) : T = ( − 1.000000 , 0.000001 ) , R = ( − 1.000000 , 0.000001 ) P = (-2, 0), Q = (-1, 0.000001):T = (-1.000000 , 0.000001) , R = (-1.000000 , 0.000001) P=(2,0),Q=(1,0.000001):T=(1.000000,0.000001),R=(1.000000,0.000001)

P = ( − 2.33 , 0 ) , Q = ( − 3 , 1 ) : T = ( − 0.989279 , 0.146038 ) , R = ( 1.182424 , 0.382590 ) P = (-2.33, 0), Q = (-3, 1):T = (-0.989279 , 0.146038) , R = (1.182424 , 0.382590) P=(2.33,0),Q=(3,1):T=(0.989279,0.146038),R=(1.182424,0.382590)

P = ( − 3 , 0 ) , Q = ( − 1 , 0.5 ) : T = ( − 0.922615 , 0.385721 ) , R = ( − 0.786920 , 0.410917 ) P = (-3, 0), Q = (-1, 0.5):T = (-0.922615 , 0.385721) , R = (-0.786920 , 0.410917) P=(3,0),Q=(1,0.5):T=(0.922615,0.385721),R=(0.786920,0.410917)

P = ( − 3 , 0 ) , Q = ( − 2 , 10 ) : T = ( − 0.827028 , 0.562160 ) , R = ( 8.380296 , 2.944148 ) P = (-3, 0), Q = (-2, 10):T = (-0.827028 , 0.562160) , R = (8.380296 , 2.944148) P=(3,0),Q=(2,10):T=(0.827028,0.562160),R=(8.380296,2.944148)

P = ( − 3 , 0 ) , Q = ( − 3 , 1 ) : T = ( − 0.987408 , 0.158192 ) , R = ( 1.187435 , 0.329136 ) P = (-3, 0), Q = (-3, 1):T = (-0.987408 , 0.158192) , R = (1.187435 , 0.329136) P=(3,0),Q=(3,1):T=(0.987408,0.158192),R=(1.187435,0.329136)

P = ( − 10 , 0 ) , Q = ( − 2 , 1 ) : T = ( − 0.959312 , 0.282350 ) , R = ( 0.304214 , 0.321811 ) P = (-10, 0), Q = (-2, 1):T = (-0.959312 , 0.282350) , R = (0.304214 , 0.321811) P=(10,0),Q=(2,1):T=(0.959312,0.282350),R=(0.304214,0.321811)

P = ( − 1024 , 0 ) , Q = ( − 8 , 4 ) : T = ( − 0.970066 , 0.242842 ) , R = ( 7.000894 , 0.244735 ) P = (-1024, 0), Q = (-8, 4):T = (-0.970066 , 0.242842) , R = (7.000894 , 0.244735) P=(1024,0),Q=(8,4):T=(0.970066,0.242842),R=(7.000894,0.244735)

Conclusion

本实验提高精度的主要措施:

  1. 使用long double 类型;

  2. 用较多位数来表示 π \pi π

  3. 将含有除法的方程交叉相乘,通过乘法代替除法,以减少在求商时的误差;

  4. 在用二分法解非线性方程时,限制条件是结果的绝对值 ≤ 1 0 − 7 \leq10^{-7} 107

但由于本实验的方程较为复杂,含有三角函数、根式、平方等易造成误差放大的因素,暂时还未找到其他较好的减少误差的办法,但还尝试了另一种思路,叙述如下:

设OT的延长线交PQ于R,则由角平分线定理,有 Q T P T = Q R R P = Q y R y − 1 \frac{QT}{PT}=\frac{QR}{RP}=\frac{Q_y}{R_y}-1 PTQT=RPQR=RyQy1
T ( x , y ) , k = Q y Q x − P x T(x,y),k=\frac{Qy}{Qx-Px} T(x,y),k=QxPxQy,带入上述方程化简得:
Q y 2 ( k x − y ) 2 + k 2 P x 2 y 2 − 2 k Q y P x y ( k x − y ) k 2 P x 2 y 2 = Q y 2 + Q x 2 + 1 − 2 y Q y − 2 x Q x 1 + P x 2 − 2 x P x \frac{Q_y^2(kx-y)^2+k^2P_x^2y^2-2kQ_yPxy(kx-y)}{k^2Px^2y^2}=\frac{Q_y^2+Q_x^2+1-2yQ_y-2xQ_x}{1+P_x^2-2xP_x} k2Px2y2Qy2(kxy)2+k2Px2y22kQyPxy(kxy)=1+Px22xPxQy2+Qx2+12yQy2xQx
故只需用for循环遍历或二分法解非线性方程 ( Q y 2 ( k x − y ) 2 + k 2 P x 2 y 2 − 2 k Q y P x y ( k x − y ) ) ( 1 + P x 2 − 2 x P x ) − ( k 2 P x 2 y 2 ) ( Q y 2 + Q x 2 + 1 − 2 y Q y − 2 x Q x ) = 0 (Q_y^2(kx-y)^2+k^2P_x^2y^2-2kQ_yPxy(kx-y))(1+P_x^2-2xP_x)-(k^2Px^2y^2)(Q_y^2+Q_x^2+1-2yQ_y-2xQ_x)=0 (Qy2(kxy)2+k2Px2y22kQyPxy(kxy))(1+Px22xPx)(k2Px2y2)(Qy2+Qx2+12yQy2xQx)=0
y = 1 − x 2 y=\sqrt{1-x^2} y=1x2

由对称性易知
R x = Q x T y T x + T x ( 2 T x − Q x ) T y + 2 T y − 2 Q y T x T y + T y T x Rx=\frac{\frac{QxTy}{Tx} + \frac{Tx(2Tx - Qx)}{Ty} + 2Ty -2Qy}{\frac{Tx}{Ty}+\frac{Ty}{Tx}} Rx=TyTx+TxTyTxQxTy+TyTx(2TxQx)+2Ty2Qy
R y = Q y − T y T x ( Q x − R x ) Ry=Qy-\frac{Ty}{Tx(Qx - Rx)} Ry=QyTx(QxRx)Ty
但验证结果时发现,上述方法在遇到一些极端情况如 P = ( − 1.000001 , 0 ) , Q = ( − 2 , 2 ) P = (-1.000001, 0), Q = (-2, 2) P=(1.000001,0),Q=(2,2)时,中间的运算过程会出现极小的浮点数导致无法继续运算,所以这种思路在细节上仍有待改进。

这篇关于计算方法实验1:圆形镜面成像问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822349

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例