基于ID3算法生成决策树

2024-03-18 10:38
文章标签 算法 生成 决策树 id3

本文主要是介绍基于ID3算法生成决策树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

决策树的类型有很多,有CART、ID3和C4.5等,其中CART是基于基尼不纯度(Gini)的,而ID3和C4.5都是基于信息熵的,它们两个得到的结果都是一样的,本次定义主要针对ID3算法。

在构造决策树时,第一个问题就是:当前的那个特征在划分数据是起着决定性的作用。为了找到决策性的特征必须对每个特征进行评估。因此本文针对ID3算法使用的信息熵方法划分数据的特征来进行实验。

信息熵

如果待分类的的事物有多种,比如有A,B,C三类,则A的信息为:

X(a)=-lon2(p(a)),即log以2为底的a出现的概率。

而熵的定义为信息的期望值,即:

这里写图片描述

在划分数据前和划分数据后信息方式的变化称为信息增益。因此我们找出信息增益最大的一个特征用来划分数据集。ID3的原理即使Gain达到最大值。信息增益即为熵的减少或者是数据无序度的减少.

计算信息熵

计算的公式见上图,在计算是要统计每个类别出现的次数,然后用公式去计算即可。
如求下列数据的信息熵,dataset为数据集,最后一列为类别,前两列为特征。

dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
def calShannon(dataSet):    #这里的dataset为python列表形式m=len(dataSet)          #得到样本个数labelCount={}for featVec in dataSet:  #遍历每一个样本label=featVec[-1]    #这里最后一列为样本的类别if label not in labelCount.keys():labelCount[label]=0labelCount[label]+=1shan=0.0for key in labelCount:prob=float(labelCount[key])/mshan -=prob * math.log(prob,2)print ("the shannon is %f " % shan) return shan

将上述代码保存到tree.py中,然后运行,即可计算此数据的信息熵

>>> import tree
>>> dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
>>> tree.calShannon(dataSet)
the shannon is 0.970951 
0.9709505944546686

划分数据集

按给定的特征划分数据集:

#特别注意这里的nFeat,所选择的数据特征,value为这个特征里的值
def split(dataSet,nFeat,value):         #the num of feature ,and using value to split,datasetretData=[]for featVec in dataSet:   #遍历样本if featVec[nFeat]==value:  reducedVec=featVec[:nFeat]reducedVec.extend(featVec[nFeat+1:])  #this mean reduce the featureretData.append(reducedVec)return retData

运行结果如下:

#第0个特征,值为1,返回的是去掉第0个特征后剩余的样本
>>> tree.split(dataSet,0,1)  
[[1, 'yes'], [1, 'yes'], [0, 'no']]
>>> tree.split(dataSet,1,1)
[[1, 'yes'], [1, 'yes'], [0, 'no'], [0, 'no']]

这里需要重点理解一下:

我如果选择第0个特征进行划分,那么在第0个特征中有许多不同的值,那么,应该计算这些不同值划分过后的信息熵之和,为以第0个特征划分后的信息熵。

举个例子,如果要以第0个特征划分数据,在第0个数据上有2个不同的值分别为0,1那么应该将数据划分为两部分,调用两次tree.split(dataSet,0,1),
tree.split(dataSet,0,0),然后分别求出他们的信息熵,再求和,就是最后所得的信息熵了。

因此理解上述的过程后,即可实现如何才是最好的样本划分方式:
这里解释一下: featList = [example[i] for example in dataSet]

python中的列表推到式,其中dataSet为样本,example每次取出一个样本,然后将这个样本的exampe[i]即第i个元素加到featlist中。
即此句的作用是快速的取出样本中第i个特征的所有值。

def chooseBestFeature(dataSet):numFeatures = len(dataSet[0]) - 1      #the last column is used for the labelsbaseEntropy = calShannon(dataSet)  # the origin shannonbestInfoGain = 0.0; bestFeature = -1for i in range(numFeatures):        #iterate over all the featuresfeatList = [example[i] for example in dataSet]#create a list of all the examples of this featureuniqueVals=set(featList) # have how many value in this featurenewShannon=0.0for value in uniqueVals:subDataSet=split(dataSet,i,value)prob=len(subDataSet)/float(len(dataSet))newShannon +=prob*calShannon(subDataSet)infoGain=baseEntropy-newShannonif infoGain>bestInfoGain:bestInfoGain=newShannonbestFeature=ireturn bestFeature 

同样将上述代码加到tree.py中,运行得到:

>>> tree.chooseBestFeature(dataSet)
the shannon is 0.970951 
the shannon is 0.000000 
the shannon is 0.918296 
the shannon is 0.000000 
the shannon is 1.000000 
0      #即最好的特质是0,它使得信息增益最大

构建决策树

这里有几点需要说明:
1. 如果用完所有的特征仍然不能区分样本,则以投票算法返回
2. 如果为用完特征样本已经同属于一类,则直接返回
3. 递归处理

投票算法:

def majorityCnt(classList):classCount={}for vote in classList:if vote not in classCount.keys(): classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]

这里sorted我更喜欢写成:
sorted(classCount.items(), key=lambda x:x[1], reverse=True)

构造决策树:

def createTree(dataSet,labels):classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList): return classList[0]#stop splitting when all of the classes are equalif len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSetreturn majorityCnt(classList)bestFeat = chooseBestFeature(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}del(labels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labelsmyTree[bestFeatLabel][value] = createTree(split(dataSet, bestFeat, value),subLabels)return myTree     

运行结果:

>>> data,label=tree.createDataSet()
>>> data
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
>>> label
['no surfacing', 'flippers']
>>> myTree=tree.createTree(data,label)
the shannon is 0.970951 
the shannon is 0.000000 
the shannon is 0.918296 
the shannon is 0.000000 
the shannon is 1.000000 
the shannon is 0.918296 
the shannon is 0.000000 
the shannon is 0.000000 
>>> myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

myTree是用嵌套的字典来模拟树形结构。

这篇关于基于ID3算法生成决策树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822079

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.