本文主要是介绍poj 3264 线段树 寻找最大最小值 SEGMENT TREE,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
Source
My original code is lengthy:
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int N,Q,cows[50001],A,B;
int cal(int a,int b){int max=cows[a],min=cows[a];for(int i=a+1;i<=b;i++){if(max<cows[i])max=cows[i];if(min>cows[i])min=cows[i];}return max-min;
}
struct node{int l,r,min,max;
}tree[50001*3];
struct maxmin{int max,min;
};void build(int k,int l,int r){tree[k].l=l;tree[k].r=r; if( l==r ){tree[k].max=max(cows[l],cows[r]);tree[k].min=min(cows[l],cows[r]);}else{build(2*k+1,l,(l+r)/2);build(2*k+2,(l+r)/2+1,r);tree[k].max=max(tree[2*k+1].max,tree[2*k+2].max);tree[k].min=min(tree[2*k+1].min,tree[2*k+2].min); }
}
int query(int k,int l,int r,int *Max,int *Min){int max1,max2,min1,min2;if(tree[k].l==l && tree[k].r==r){(*Max)=tree[k].max;(*Min)=tree[k].min;return (*Max)-(*Min);}int mid=(tree[k].l+tree[k].r)/2;if( r<=mid ){query(2*k+1,l,r,Max,Min);return (*Max)-(*Min);}else if( l>=mid+1 ){query(2*k+2,l,r,Max,Min);return (*Max)-(*Min);}else{query(2*k+1,l,mid,Max,Min);max1=(*Max);min1=(*Min);query(2*k+2,mid+1,r,Max,Min);max2=(*Max);min2=(*Min);(*Max)=max(max1,max2);(*Min)=min(min1,min2);return (*Max)-(*Min); }}
int main(){int i,j,Max,Min;scanf("%d%d",&N,&Q);for(i=1;i<=N;i++)scanf("%d",&cows[i]);build(0,1,N);for(i=0;i<Q;i++){scanf("%d%d",&A,&B);int res=query( 0,A,B,&Max,&Min );printf("%d\n",res);}//system("pause");return 0;
}
The concise code :
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
int N,Q,cows[50001],A,B;struct node{int l, r, min, max;
}tree[50001 * 3];
int maxx, minx;void build(int k, int l, int r){tree[k].l=l;tree[k].r=r; if( l==r )tree[k].max=tree[k].min=cows[l];else{build(2 * k + 1, l, (l + r) / 2);build(2 * k + 2, (l + r) / 2 + 1, r);tree[k].max = max(tree[2*k+1].max, tree[2*k+2].max);tree[k].min = min(tree[2*k+1].min, tree[2*k+2].min); }
}
int query(int k, int l, int r){int max1, max2, min1, min2; if(tree[k].l == l && tree[k].r == r){maxx = tree[k].max;minx = tree[k].min;return (maxx - minx);} int mid = (tree[k].l + tree[k].r) / 2;if(r <= mid){query(2 * k + 1, l, r);return (maxx - minx);}else if(l >= mid + 1){query(2 * k + 2, l, r);return (maxx - minx);}else{query(2 * k + 1, l, mid);max1 = maxx;min1 = minx;query(2 * k + 2, mid + 1, r); maxx = max(max1, maxx);minx = min(min1, minx);return maxx - minx; }}
int main(){int i,j,Max,Min;scanf("%d%d",&N,&Q);for(i=1;i<=N;i++)scanf("%d",&cows[i]);build(0,1,N);for(i=0;i<Q;i++){scanf("%d%d",&A,&B);int res=query(0,A,B);printf("%d\n",res);}//system("pause");return 0;
}
Another way:
Use the RMQ to get the maximum and minimum of d[i][j]:
//8200K 1610MS
#include
#include
const int M = 50005;
const int N = 20;
int H,dx[M][N],dy[M][N],n;
int max (int a,int b)
{return a > b ? a : b;
}
int min(int a,int b)
{return a > b ? b : a;
}
void Init()
{int i,j;for (i = 1; i <= n; i ++){scanf ("%d",&H);dx[i][0] = dy[i][0] = H;}for (j = 1; (1<<j) <= n; j ++)for (i = 1; i +(1<<j)-1<=n; i ++){dx[i][j] = min(dx[i][j-1],dx[i+(1<<(j-1))][j-1]);dy[i][j] = max(dy[i][j-1],dy[i+(1<<(j-1))][j-1]);}}
int RMQ(int L ,int R)
{int k = 0;while ((1<<(k+1))<=R-L+1) k ++;return max(dy[L][k],dy[R-(1<<k)+1][k]) - min(dx[L][k],dx[R-(1<<k)+1][k]);
}
int main ()
{int m,a,b;while (~scanf ("%d%d",&n,&m)){Init();while (m --){scanf ("%d%d",&a,&b);printf ("%d\n",RMQ(a,b));}}return 0;
}
A better concise version:
#include <stdio.h>
#include <vector>
#include <iostream>
using namespace std;class Node {public:int l, r, max, min;Node(int ll = 0, int rr = 0, int max1 = 0, int min1 = 0) : l(ll), r(rr), max(max1), min(min1){}
};void build(vector<Node>& tree, const vector<int>& height, int k, int l, int r) {tree[k].l = l, tree[k].r = r;if (l == r) {tree[k].max = tree[k].min = height[l];return;}build(tree, height, k*2+1, l, (l+r)/2);build(tree, height, k*2+2, (l+r)/2+1, r);tree[k].max = max(tree[k*2+1].max, tree[k*2+2].max);tree[k].min = min(tree[k*2+1].min, tree[k*2+2].min);
}
int query(vector<Node>& tree, int k, int l, int r, int& maxv, int& minv) {int max1, min1, max2, min2;if (l == tree[k].l && r == tree[k].r) {maxv = tree[k].max, minv = tree[k].min;return maxv - minv;}int mid = (tree[k].l + tree[k].r) / 2;if (r <= mid) {return query(tree, k*2+1, l, r, maxv, minv);}else if (l >= mid+1) {return query(tree, k*2+2, l, r, maxv, minv);}else {query(tree, k*2+1, l, mid, max1, min1);query(tree, k*2+2, mid+1, r, max2, min2); maxv = max(max1, max2);minv = min(min1, min2);return maxv -minv;}
}
int main() {int N, Q, l, r, maxv, minv;scanf("%d%d", &N, &Q);vector<int> height(N,0);vector<Node> tree(50001 * 3);for (int i = 0; i < N; ++i)scanf("%d", &height[i]);build(tree, height, 0, 0, N-1);for (int i = 0; i < Q; ++i) {scanf("%d%d", &l, &r);printf("%d\n", query(tree, 0, l-1, r-1, maxv, minv));}return 0;
}
这篇关于poj 3264 线段树 寻找最大最小值 SEGMENT TREE的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!